4.8 Article

A noncanonical AR addiction drives enzalutamide resistance in prostate cancer

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-21860-7

关键词

-

资金

  1. National Institutes of Health [CA134514, CA130908, CA193239, CA203849]
  2. Mayo Clinic Foundation
  3. Canadian Institutes of Health Research [141635, 144159, 153081]
  4. Terry Fox Research Institute program project [1062]
  5. Mayo Edward C. Kendall Fellowship

向作者/读者索取更多资源

Resistance to next-generation anti-androgen enzalutamide in castration-resistant prostate cancer (CRPC) is a major challenge. Through genome-wide ChIP-seq profiling, it was found that AR-dependent transcription of noncanonical targets drives an ENZ-resistant mechanism, making resistant cells susceptible to dual inhibition of BET and CBP/p300 signaling.
Resistance to next-generation anti-androgen enzalutamide (ENZ) constitutes a major challenge for the treatment of castration-resistant prostate cancer (CRPC). By performing genome-wide ChIP-seq profiling in ENZ-resistant CRPC cells we identify a set of androgen receptor (AR) binding sites with increased AR binding intensity (ARBS-gained). While ARBS-gained loci lack the canonical androgen response elements (ARE) and pioneer factor FOXA1 binding motifs, they are highly enriched with CpG islands and the binding sites of unmethylated CpG dinucleotide-binding protein CXXC5 and the partner TET2. RNA-seq analysis reveals that both CXXC5 and its regulated genes including ID1 are upregulated in ENZ-resistant cell lines and these results are further confirmed in patient-derived xenografts (PDXs) and patient specimens. Consistent with the finding that ARBS-gained loci are highly enriched with H3K27ac modification, ENZ-resistant PCa cells, organoids, xenografts and PDXs are hyper-sensitive to NEO2734, a dual inhibitor of BET and CBP/p300 proteins. These results not only reveal a noncanonical AR function in acquisition of ENZ resistance, but also posit a treatment strategy to target this vulnerability in ENZ-resistant CRPC. Resistance to second generation anti-androgen therapies such as enzalutamide (ENZ) can emerge in prostate cancer patients. Here, the authors identify an ENZ-resistant mechanism driven by AR-dependent transcription of noncanonical targets that make resistant cells susceptible to dual inhibition of BET and CBP/p300 signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据