4.8 Article

Quantum confinement of the Dirac surface states in topological-insulator nanowires

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-21230-3

关键词

-

资金

  1. Projekt DEAL

向作者/读者索取更多资源

The non-trivial topology of three-dimensional topological insulators leads to the appearance of unique gapped Dirac sub-band structures in nanowires, which are important for future Majorana qubits. These quantized sub-bands can be observed by tuning the chemical potential in the gate-voltage dependence of the resistance.
The non-trivial topology of three-dimensional topological insulators dictates the appearance of gapless Dirac surface states. Intriguingly, when made into a nanowire, quantum confinement leads to a peculiar gapped Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes, playing a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here, using devices fabricated from thin bulk-insulating (Bi1-xSbx)(2)Te-3 nanowires we show that non-equidistant resistance peaks, observed upon gate-tuning the chemical potential across the Dirac point, are the unique signatures of the quantized sub-bands. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitized by an s-wave superconductor. In topological insulator nanowires quantized Dirac sub-bands are expected, but direct evidence is still missing. Here, the authors report signatures of sub-bands in the gate-voltage dependence of the resistance by tuning the chemical potential in (Bi1-xSbx)(2)Te-3 nanowires through the Dirac point.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据