4.8 Article

Ecology-guided prediction of cross-feeding interactions in the human gut microbiome

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-21586-6

关键词

-

资金

  1. Gordon and Betty Moore Foundation [GBMF4513]

向作者/读者索取更多资源

Combining ecology-based computational methods and optimization techniques, GutCP predicts a large number of experimentally untested cross-feeding interactions in the human gut microbiome. It has the potential to improve microbial community models and predict the metabolic profile of the gut.
Understanding a complex microbial ecosystem such as the human gut microbiome requires information about both microbial species and the metabolites they produce and secrete. These metabolites are exchanged via a large network of cross-feeding interactions, and are crucial for predicting the functional state of the microbiome. However, till date, we only have information for a part of this network, limited by experimental throughput. Here, we propose an ecology-based computational method, GutCP, using which we predict hundreds of new experimentally untested cross-feeding interactions in the human gut microbiome. GutCP utilizes a mechanistic model of the gut microbiome with the explicit exchange of metabolites and their effects on the growth of microbial species. To build GutCP, we combine metagenomic and metabolomic measurements from the gut microbiome with optimization techniques from machine learning. Close to 65% of the cross-feeding interactions predicted by GutCP are supported by evidence from genome annotations, which we provide for experimental testing. Our method has the potential to greatly improve existing models of the human gut microbiome, as well as our ability to predict the metabolic profile of the gut. Understanding a complex microbial ecosystem such as the human gut microbiome requires information about both microbial species and the metabolites they produce and secrete. Here, the authors propose an ecology-based computational method to predict hundreds of new experimentally untested cross-feeding interactions in the human gut microbiome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据