4.8 Article

Layer number dependent ferroelasticity in 2D Ruddlesden-Popper organic-inorganic hybrid perovskites

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-21493-w

关键词

-

资金

  1. Center for Hybrid Organic-Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center - Office of Basic Energy Sciences, Office of Science within the US Department of Energy
  2. Department of the Defense, Defense Threat Reduction Agency [HDTRA1-20-2-0002]

向作者/读者索取更多资源

This study reveals the existence of ferroelasticity in layered perovskites with more than one layer, originated from distortion of inorganic octahedra caused by the rotation of aspherical methylammonium cations. In contrast, single octahedra layer perovskites do not exhibit ferroelasticity.
Ferroelasticity represents material domains possessing spontaneous strain that can be switched by external stress. Three-dimensional perovskites like methylammonium lead iodide are determined to be ferroelastic. Layered perovskites have been applied in optoelectronic devices with outstanding performance. However, the understanding of lattice strain and ferroelasticity in layered perovskites is still lacking. Here, using the in-situ observation of switching domains in layered perovskite single crystals under external strain, we discover the evidence of ferroelasticity in layered perovskites with layer number more than one, while the perovskites with single octahedra layer do not show ferroelasticity. Density functional theory calculation shows that ferroelasticity in layered perovskites originates from the distortion of inorganic octahedra resulting from the rotation of aspherical methylammonium cations. The absence of methylammonium cations in single layer perovskite accounts for the lack of ferroelasticity. These ferroelastic domains do not induce non-radiative recombination or reduce the photoluminescence quantum yield. Ruddlesden popper layered perovskites can be used in optoelectronic devices, but the understanding of their lattice strain as well as ferroelasticity is still lacking. Here, the authors find ferroelasticity in layered perovskites with layer number more than one and reveal its mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据