4.8 Article

Simulating the ghost: quantum dynamics of the solvated electron

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-20914-0

关键词

-

资金

  1. Swiss National Science Foundation (SNSF) Sinergia grant
  2. University Research Priority Program (URPP) for solar light to chemical energy conversion (LightChEC) of the University of Zurich
  3. Swiss National Supercomputing Center (CSCS) [uzh1, s965]
  4. SNSF [PZ00P2_174227]
  5. NCCR MARVEL - SNSF
  6. GRC Travel Grant
  7. Swiss National Science Foundation (SNF) [PZ00P2_174227] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The nature of the bulk hydrated electron has been a challenge for both experiment and theory. Here the authors use a machine-learning model trained on MP2 data to achieve an accurate determination of the structure, diffusion mechanisms, and vibrational spectroscopy of the solvated electron.
The nature of the bulk hydrated electron has been a challenge for both experiment and theory due to its short lifetime and high reactivity, and the need for a high-level of electronic structure theory to achieve predictive accuracy. The lack of a classical atomistic structural formula makes it exceedingly difficult to model the solvated electron using conventional empirical force fields, which describe the system in terms of interactions between point particles associated with atomic nuclei. Here we overcome this problem using a machine-learning model, that is sufficiently flexible to describe the effect of the excess electron on the structure of the surrounding water, without including the electron in the model explicitly. The resulting potential is not only able to reproduce the stable cavity structure but also recovers the correct localization dynamics that follow the injection of an electron in neat water. The machine learning model achieves the accuracy of the state-of-the-art correlated wave function method it is trained on. It is sufficiently inexpensive to afford a full quantum statistical and dynamical description and allows us to achieve accurate determination of the structure, diffusion mechanisms, and vibrational spectroscopy of the solvated electron. The nature of the bulk hydrated electron has been a challenge for both experiment and theory. Here the authors use a machine-learning model trained on MP2 data to achieve an accurate determination of the structure, diffusion mechanisms, and vibrational spectroscopy of the solvated electron.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据