4.4 Article

Knockdown of long non-coding RNA KCNQ1OT1 suppresses the progression of osteoarthritis by mediating the miR-211-5p/TCF4 axis in vitro

期刊

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/etm.2021.9886

关键词

osteoarthritis; long non-coding RNA KCNQ1OT1; microRNAs; miR-211-5p; transcription factor 4

向作者/读者索取更多资源

This study found that KCNQ1OT1 may ameliorate osteoarthritis in vitro by regulating the miR-211-5p/TCF4 axis.
Numerous studies have reported the critical roles of long non-coding RNAs (lncRNAs) in the regulation of osteoarthritis (OA) development. The present study aimed to assess the function and regulatory mechanism of a lncRNA, KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1), in OA in vitro. C28/I2 cells were treated with lipopolysaccharide (LPS) to generate an in vitro OA model. The relative expression levels of KCNQ1OT1, microRNA (miR)-211-5p and transcription factor 4 (TCF4) were determined via reverse transcription-quantitative polymerase chain reaction. The associations between KCNQ1OT1, miR-211-5p and TCF4 were confirmed using a dual-luciferase reporter assay. Furthermore, cell viability was assessed using the MTT assay. Inflammatory cytokine levels were measured using ELISA. The protein expression levels of matrix metalloproteinase-3/13, collagen II/X and TCF4 were detected by western blotting. KCNQ1OT1 and TCF4 were highly expressed in the cartilage tissues of patients with OA and C28/I2 cells treated with LPS (OA cells), whereas miR-211-5p was downregulated concomitantly in OA tissues and cells. Knockdown of KCNQ1OT1 stimulated cell viability, and suppressed the inflammation and degradation of the extracellular matrix (ECM) in OA cells. In addition, overexpression of miR-211-5p stimulated cell viability, and inhibited inflammation and degradation of the ECM in OA cells. Notably, miR-211-5p was revealed to be the target of, and was negatively regulated by, KCNQ1OT1. TCF4 was targeted and negatively modulated by miR-211-5p. Transfection of cells with the miR-211-5p inhibitor or pcDNA-TCF4 reversed the suppressive effects of short hairpin RNA (sh)-KCNQ1OT1 on inflammation and ECM degradation, as well as the promotive effect of sh-KCNQ1OT1 on viability in OA in vitro. Therefore, KCNQ1OT1 may regulate the miR-211-5p/TCF4 axis to ameliorate OA in vitro.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据