4.4 Article

Strong interactions between Salp15 homologues from the tick I. ricinus and distinct types of the outer surface OspC protein from Borrelia

期刊

TICKS AND TICK-BORNE DISEASES
卷 12, 期 2, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.ttbdis.2020.101630

关键词

OspC; Borrelia; Iric1; Iric2; Iric3

资金

  1. Polish Government [2015/17/B/NZ1/00873]
  2. National Science Centre (NCN)

向作者/读者索取更多资源

Ticks of the genus Ixodes are parasites that feed on vertebrate blood and act as vectors for various pathogenic microbes, including the causative agent of Lyme borreliosis. The saliva of these ticks contains bioactive molecules, with the Salp15 protein being a well-studied component that suppresses the host immune response and interacts with Borrelia burgdorferi spirochetes. Recent research has shown that in addition to Salp15, other homologues from Ixodes ricinus are also capable of binding to the outer surface protein C (OspC) of Borrelia burgdorferi, potentially aiding in evading the host immune system.
Ticks belonging to the genus Ixodes are parasites feeding on vertebrate blood and vectors for many pathogenic microbes, including Borrelia burgdorferi sensu lato spirochetes, the causative agent of Lyme borreliosis. The tick saliva contains a mixture of bioactive molecules showing a wide range of properties for efficient engorgement. One of the most extensively studied components of tick saliva is a 15-kDa salivary gland protein (Salp15) from Ixodes scapularis. This multifunctional protein suppresses the immune response of hosts through pleiotropic action on a few crucial defense pathways. Salp15 and its homologue from I. ricinus Iric1 have been also shown to bind to Borrelia burgdorferi sensu stricto outer surface protein C (OspC) permitting the spirochetes to evade antibody-mediated killing in the human host. Further studies revealed that Salp15 and Iric1 protected B. burgdorferi s. s. and B. garinii expressing OspC against the complement system. OspC is the most variable protein on the outer surface of Borrelia, which in addition to Salp15 can also bind other ligands, such as plasminogen, fibrinogen, fibronectin or complement factor 4. So far several OspC variants produced by B. burgdorferi s. l. spirochetes were shown to be capable of binding Salp15 or its homologue, but the protection against borreliacidal antibodies has only been proven in the case of B. burgdorferi s. s. The question of Salp15 contribution to Borrelia survival during the infection has been comprehensively studied during the last decades. In contrast, the organization of the OspC-Salp15 complex has been poorly explored. This report describes the binding between three Salp15 homologues from the tick Ixodes ricinus (Iric1, Iric2 and Iric3) and OspC from four B. burgdorferi sensu lato strains in terms of the binding parameters, analyzed with two independent biophysical methods - Microscale thermophoresis (MST) and Biolayer interferometry (BLI). The results of both experiments show a binding constant at the nanomolar level, which indicates very strong interactions. While the Iric1-OspC binding has been reported before, we show in this study that also Iric2 and Iric3 are capable of OspC binding with high affinity. This observation suggests that these two Salp15 homologues might be used by B. burgdorferi s. l. in a way analogous to Iric1. A comparison of the results from the two methods let us propose that N-terminal immobilization of OspC significantly increases the affinity between the two proteins. Finally, our results indicate that the Iric binding site is located in close proximity of the OspC epitopes recognized by human antibodies, which may have important biological and medical implications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据