4.7 Article

Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink

期刊

BIOFABRICATION
卷 13, 期 3, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1758-5090/abec2d

关键词

shear thinning; bio-functional; printability; xanthan gum; GelMA

资金

  1. Alfred Hospital (Victoria, Australia)
  2. Monash Faculty of Engineering
  3. Monash Institute of Medical Engineering (MIME)
  4. Monash Graduate Research Completion Award (GRCA)

向作者/读者索取更多资源

The combination of xanthan gum and gelatin methacryloyl has been shown to create a stable and cell-interactive bioink with improved properties for 3D bioprinting. This bioink demonstrated high cell viability and stability during in vitro culture, making it a promising candidate for 3D bioprinting applications.
3D bioprinting is a recent technique that can create complex cell seeded scaffolds and therefore holds great promise to revolutionize the biomedical sector by combining materials and structures that more closely mimic the 3D cell environment in tissues. The most commonly used biomaterials for printing are hydrogels, however, many of the hydrogels used still present issues of printability, stability, or poor cell-material interactions. We propose that bioinks with intrinsic self-assembling and shear thinning properties, such as xanthan gum, can be methacrylated (XGMA) and combined with a bio-functional material such as gelatin methacryloyl (GelMa) to create a stable, cell-interactive bioink with improved properties for 3D bioprinting. These biomaterials have reduced viscosity under high shear and recover their viscosity rapidly after the shear is removed, retaining their shape, which translates to easier extrusion whilst maintaining accurate fidelity after printing. This was confirmed in printing studies, with measured normalized strand widths of 1.2 obtained for high gel concentrations (5+5 % XGMA-GelMA). Furthermore, the introduction of a secondary photo-cross-linking method allowed tuning of the mechanical properties of the hydrogel with stiffness between 15 and 30 kPa, as well as improving the stability of the hydrogel with retention of 75 % of its mass after 90 d. The hydrogel was shown to be biocompatible and bio-active with 97 % cell viability, and cell spreading after 7 d of culture for low gel concentrations (3+3 % XGMA-GelMA). Shear stresses were relatively low while printing (1 kPa) as a result of the shear thinning property of the material, which supported cell viability during extrusion. Finally, printed hydrogels retained high cell viability for lower gel concentrations, and showed improved cell viability for more concentrated hydrogels when compared to cells cultured in bulk hydrogels, presumably due to improved nutrient/oxygen diffusion and cell migration. In conclusion, stability and formulation of a XGMA-GelMA shear thinning composite hydrogel has been optimized to create a bio-functional bioink, with improved printability, and in vitro culture stability via secondary photo-induced cross-linking, making this composite a promising bioink for 3D bioprinting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据