4.8 Article

Biomineralization of hypersaline produced water using microbially induced calcite precipitation

期刊

WATER RESEARCH
卷 190, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116753

关键词

Produced water; MICP; Ureolytic bacteria; Biomineralization; Heavy metals; Calcium

资金

  1. National Science Foundation (NSF) [EEC-1449501]
  2. New Mexico State University

向作者/读者索取更多资源

This study demonstrates the feasibility of using MICP for removing Ca2+ and toxic contaminants from hypersaline produced water (PW), achieving high removal efficiencies in batch and continuous studies. Metagenomic sequencing analysis reveals the construction of a stable ureolytic bacterial consortium in the continuous biofiltration system. The combination of MICP and ammonium recovery significantly reduces the acute toxicity of PW towards Vibrio fischeri.
Reusing produced water (PW) as the subsequent hydraulic fracturing fluid is currently the most economical and dominant practice in the shale oil and gas industry. However, high Ca2+ present in PW needs to be removed prior to reuse to minimize the potential for well clogging and formation damage. In this study, the microbially induced calcite precipitation (MICP), as an emerging biomineralization technique mediated by ureolytic bacteria, was employed to remove Ca2+ and toxic contaminants from hypersaline PW for the first time. Batch and continuous studies demonstrated the feasibility of MICP for Ca2+ removal from hypersaline PW under low urea and nutrient conditions. Throughout the continuous biofiltration operation with biochar as the media, high removal efficiencies of Ca2+ (similar to 96%), organic contaminants (similar to 100%), and heavy metals (similar to 100% for As, Cd, Mn and Ni, 92.2% for Ba, 94.2% for Sr) were achieved when PW co-treated with synthetic domestic wastewater (SDW) under the condition of PW:SDW = 1:1 & urea 4 g/L. Metagenomic sequencing analysis showed that a stable ureolytic bacterial consortium (containing Sporosarcina and Arthrobacter at the genus level) was constructed in the continuous biofiltration system under hypersaline conditions, which may play a crucial role during the biomineralization process. Moreover, the combination of the MICP and ammonium recovery could significantly reduce the acute toxicity of PW towards Vibrio fischeri by 72%. This research provides a novel insight into the biomineralization of Ca2+ and heavy metals from hypersaline PW through the MICP technique. Considering the low cost and excellent treatment performance, the proposed process has the potential to be used for both hydraulic fracturing reuse and desalination pretreatment on a large scale. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据