4.7 Article

Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis

期刊

WASTE MANAGEMENT
卷 121, 期 -, 页码 248-254

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2020.12.024

关键词

Cotton; Waste textiles; Recycling; Acid hydrolysis

向作者/读者索取更多资源

The study evaluated the possibility of using acid hydrolysis to directly degrade cotton fibers in waste textiles to produce a glucose solution, demonstrating the potential for chemically recycling waste textiles via acid hydrolysis and achieving high glucose production.
The fashion industry has a considerable environmental impact, especially due to the increased generation of waste textiles as a result of fast fashion business models. Although fiber-to-fiber recycling processes are being developed, such a process is in reality a downcycling process, in which the mechanical properties of the textile fibers are impoverished with each cycle. Thus, new alternatives are required to completely close the fashion loop through chemically recycling textile fibers unfit for other types of recycling or resale due to their poor quality. We have evaluated the possibility of using acid hydrolysis to directly depolymerize the cotton fibers in waste textiles to produce a glucose solution, which could subsequently be used for the production of chemicals or fuels. Although a one-step procedure with sulfuric acid was unable to deliver high glucose production, it was possible to achieve a glucose yield over 90% through a two-step procedure, in which concentrated and dilute sulfuric acid were combined to exploit the benefits of both concentrations. Glucose concentrations around 40 g/L were achieved by increasing the solids loading in the two-step process, which might be sufficiently high for the fermentation of the solution into high-value products. Thus, this study demonstrates that it would be possible to chemically recycle (cellulose-based) waste textiles via acid hydrolysis, which, if correctly designed, could avoid the need to use enzymes to achieve high conversion efficiencies. (C) 2020 The Author(s). Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据