4.6 Article

Application of genetic algorithm-based support vector machines for prediction of soil liquefaction

期刊

ENVIRONMENTAL EARTH SCIENCES
卷 75, 期 10, 页码 -

出版社

SPRINGER
DOI: 10.1007/s12665-016-5673-7

关键词

Soil liquefaction; Support vector machine; Genetic algorithm; Grid search; Liquefaction; Classification accuracy

向作者/读者索取更多资源

This paper presents a hybrid genetic algorithm (GA) and support vector machine (SVM) techniques to predict the potential of soil liquefaction. GA is employed in selecting the optimal values of the kernel function and the penalty parameter in SVM model to improve the forecasting accuracy. The database used in this study includes 109 CPT-based field observations from five major earthquakes between 1964 and 1983. Several important parameters, including the cone resistance, total vertical stress, effective vertical stress, mean grain size, normalized peak horizontal acceleration at ground surface, cyclic stress ratio, and earthquake magnitude, were used as the input parameters, while the potential of soil liquefaction was the output parameter. The predictions from the GA-SVM model were compared with those from three methods: grid search (GS) method, artificial neural network (ANN) model, and C4.5 decision tree approach. The overall classification success rates for the entire dataset predicted by GA-SVM, ANN, C4.5 decision tree, and GS-SVM models are 97.25, 97.2, 96.3, and 92.66 %, respectively. The study concluded that the proposed GA-SVM model improves the classification accuracy and is a feasible method in predicting soil liquefaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据