4.7 Article

In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson's ratio and enhanced energy absorption

期刊

THIN-WALLED STRUCTURES
卷 160, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2020.107366

关键词

Auxetic honeycomb; Plateau stress; Deformation modes; Negative Poisson's ratio; Energy absorption

资金

  1. Special Project on Explosives for Innovation Plan of National Defense Technology Industry Basic Products and Xi'an Institute of Modern Chemistry Open Cooperative Innovation Fund

向作者/读者索取更多资源

This paper investigates the deformation modes and energy absorption capacity of a combined auxetic honeycomb structure under different impact velocities. The results show that the structure presents better energy absorption compared with conventional honeycomb structures while retaining the negative Poisson's ratio property.
In order to improve the energy absorption capacity of the honeycomb, a combined auxetic honeycomb is designed in this paper. By using the double-inclined walls replacing the horizontal walls of the star-shaped honeycomb (SSH), and introducing a thin-walled circle contacting with the four concave corners of the SSH, the star-circle honeycomb (SCH) is designed. The in-plane dynamic crushing behaviors was explored based on finite element method (FEM). There are three types of deformation modes observed with different impact velocity, including low-, medium- and high-velocity loading modes and the stress-strain curve exhibits two plateau stress stages. Based on the deformation characteristics of the representative unit, theoretical calculation models were established to estimate the plateau stress of the SCH under lowand high-velocity loading according the conservation of energy and the theoretical calculation was in keep well with the numerical simulation. A deformation modes map was summarized to investigate the effects of the impact velocity and the relative density on the deformation modes and the energy absorption capability and the dynamic Poisson's ratio were studied. The result shows that the SCH presents better energy absorption compared with SSH as well as retaining the negative Poisson's ratio property. The deformation mechanism was revealed form the structural design and plastic hinge dissipation. This work presents a different design strategy for the auxetic honeycomb, expected to guide the design of more novel auxetic with better energy absorption and mechanical property.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据