4.5 Article

Policy-based disaster recovery planning model for interdependent infrastructure systems under uncertainty

期刊

STRUCTURE AND INFRASTRUCTURE ENGINEERING
卷 17, 期 4, 页码 555-578

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/15732479.2020.1843504

关键词

Infrastructure management; decision model; management strategies; interdependency model; uncertainty; natural disasters; resilience

资金

  1. National Science Foundation (NSF) [CMMI-1541177]

向作者/读者索取更多资源

This study presents a policy-based decision model for restoration planning to support informed disaster mitigation of interdependent infrastructure systems. The model can quantitatively evaluate the effectiveness of decision strategies on system recovery and resilience.
Due to continuous population expansion and the threat of climate change, the past century has witnessed increasing occurrences of natural hazards, leading to significant global losses and requiring substantial restoration efforts. This issue challenges decision makers to act in a timely and effective manner to protect infrastructure systems from future natural hazards. This study presents a policy-based decision model for restoration planning, as part of the PRAISys platform, to support informed disaster mitigation of interdependent infrastructure systems under uncertainty. Following the concept of disaster recovery priority used in practice, this model determines the priority rank of each recovery task from pre-defined policies and simulates the restoration accordingly. This model captures different types of interdependencies with rigorous models at the component and system levels and predicts possible system recoveries under a given damage scenario in a probabilistic manner. This model can quantitatively evaluate the effectiveness of decision strategies on system recovery and resilience under different disaster recovery policies. As a demonstration example, this study applies the proposed model to the post-earthquake recovery simulation of three interdependent infrastructure systems (i.e., power, communication, and transportation) in the Lehigh Valley, Pennsylvania, USA. A total of sixteen cases were considered to represent different restoration strategies. For every case, the uncertainties in the recovery steps are captured by probabilistic simulation, and system resilience is calculated for every recovery sample. Simulation results from different strategies are compared to evaluate the effectiveness of non-intuitive strategies on system recovery and resilience. The proposed model uses a simple and straightforward concept to mimic practical disaster recovery plans. It is easy to understand and implement for modelers, and it is also useful to compare outcomes from different recovery criteria and decision strategies for practitioners.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据