4.7 Article

Experimental study of a nanofluid-based indirect solar cooker: Energy and exergy analyses

期刊

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2020.110879

关键词

Indirect solar cooker; Solar collector; Cooking unit; Nanofluid; Energy and exergy analyses

向作者/读者索取更多资源

This study investigated the effects of different heat transfer fluids on the energy and exergy efficiencies of a new indirect solar cooker, showing that using nanofluids in the system can improve performance, with SiC-oil nanofluid having the most significant impact.
In this study, the effects of using different heat transfer fluids on the energy and exergy efficiencies of a new indirect solar cooker are experimentally investigated. The studied heat transfer fluids are thermal oil and three thermal oil-based nanofluids including SiO2-oil, TiO2-oil, and SiC-oil with 0.5 wt%. In this research, the performance of the solar collector and cooking unit, as the two main sections of the indirect solar cooker, is also evaluated from the energy and exergy viewpoints. Based on the results, using the nanofluids in the indirect solar cooker improves the energy and exergy outputs as well as the energy and exergy efficiencies compared to those of the system with thermal oil. Moreover, among the studied cases, the solar cooker with SiC-oil nanofluid has a superior performance. The results reveal that using SiC-oil nanofluid instead of thermal oil in the indirect solar cooker decreases the time taken to boil 2 L of water about 17 min (23.29%). The use of SiO2-oil, TiO2-oil, and SiC-oil nanofluids in the system enhances the overall energy efficiency of the solar cooker by 1.17, 3.54, and 4.27% points compared to that of thermal oil, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据