4.7 Article

Soil carbon dynamics during drying vs. rewetting: Importance of antecedent moisture conditions

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 156, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2021.108165

关键词

Soil organic matter; Carbon destabilization; Adsorption and desorption; Drying and rewetting

资金

  1. U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Terrestrial Ecosystem Sciences Program
  2. DOE [DE-AC05-76RL01830]

向作者/读者索取更多资源

The study revealed that even short-term shifts in moisture conditions can significantly impact soil carbon dynamics, altering the bioavailability of soil organic matter and respiration fluxes.
Soil moisture influences soil carbon dynamics, including microbial growth and respiration. The response of such 'soil respiration' to moisture changes is generally assumed to be linear and reversible, i.e. to depend only on the current moisture state. Current models thus do not account for antecedent soil moisture conditions when determining soil respiration or the available substrate pool. We conducted a laboratory incubation to determine how the antecedent conditions of drought and flood influenced soil organic matter (SOM) chemistry, bioavailability, and respiration. We sampled soils from an upland coastal forest, Beaver Creek, WA USA, and subjected them to drying and rewetting treatments. For the drying treatment, field moist soils were saturated and then dried to 75, 50, 35, and 5% saturation. In the rewetting treatment, field moist soils were air-dried and then rewet to 35, 50, 75, and 100% saturation. We measured respiration and water extractable organic carbon (WEOC) concentrations and used H-1-NMR and FT-ICR-MS to characterize the WEOC pool across the treatments. The drying vs. wetting treatment strongly influenced SOM bioavailability, as rewet soils (with antecedent drought) had greater WEOC concentrations and respiration fluxes compared to the drying soils (with antecedent flood). In addition, air-dry soils had the highest WEOC concentrations, and the NMR-resolved peaks showed a strong contribution of protein groups in these soils. Both NMR and FT-ICR-MS analyses indicated increased contribution of complex aromatic groups/molecules in the rewet soils, compared to the drying soils. We suggest that drying introduced organic matter into the WEOC pool via desorption of aromatic molecules and/or by microbial cell lysis, and this stimulated microbial mineralization rates. Our work indicates that even short-term shifts in antecedent moisture conditions can strongly influence soil C dynamics at the core scale. The predictive uncertainties in current soil models may be reduced by a more accurate representation of soil water and C persistence that includes a mechanistic and quantitative understanding of the impact of antecedent moisture conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据