4.8 Review

Single-Atom Catalysts Derived from Metal-Organic Frameworks for Electrochemical Applications

期刊

SMALL
卷 17, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202004809

关键词

carbon nanostructures; electrocatalysis; metal– organic frameworks; single‐ atom catalysts

向作者/读者索取更多资源

This review summarizes the progress in the synthesis of MOF-derived SACs and their electrochemical applications. The synthetic approaches based on MOFs, characterization techniques for SACs, and their electrochemical applications including ORR, OER, HER, CO2RR, NRR, and other energy-related reactions are discussed. Insights into the current challenges and future prospects of this field are also briefly presented.
Single-atom catalysts (SACs) have received tremendous attention due to their extraordinary catalytic performances. The synthesis of this kind of catalysts is highly desired and challenging. In the last few years, metal-organic frameworks (MOFs) have been demonstrated as a promising precursor for fabricating SACs. In this review, the progress and recent advances in the synthesis of MOF-derived SACs and their electrochemical applications are summarized. First, the synthetic approaches based on MOFs and accessible characterization techniques for SACs as well as their advantages/disadvantages are discussed. Then, the electrochemical applications of these MOF-derived SACs including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and other energy-related reactions are reviewed. Finally, insights into the current challenges and future prospects of this field are briefly presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据