4.6 Article

Monitoring gas leakages simulated in a near surface aquifer of the Ellerbek paleo-channel

期刊

ENVIRONMENTAL EARTH SCIENCES
卷 75, 期 14, 页码 -

出版社

SPRINGER
DOI: 10.1007/s12665-016-5784-1

关键词

Renewable energy; Compressed air energy storage; Multiphase simulation; Geophysical monitoring; Waveform inversion; Electrical resistivity tomography; Gravity

资金

  1. German Federal Ministry of Education and Research (BMBF) [03EK3022]

向作者/读者索取更多资源

Renewable energy resources are intermittent and need buffer storage to bridge the time-gap between production and demand peaks. The North German Basin has a very large capacity for compressed air/gas energy storage (CAES) in porous saltwater reservoirs and salt cavities. Even though these geological storage systems are constructed with high caution, accidental gas leakages occurred in the past. Stored gases migrated from deep reservoirs along permeable zones upwards into shallow potable aquifers. These CAES leakages cause changes in the electro-elastic properties, and density of the aquifers, and therefore justify investigations with the application of different geophysical techniques. A multiphase flow simulation has been performed to create a realistic virtual CAES leakage scenario into a shallow aquifer in Northern Germany. This scenario is used to demonstrate the detecting resolution capability of a combined geophysical monitoring approach, consisting of acoustic joint waveform inversion (FWI) of surface and borehole data, electrical resistivity tomography (ERT) and gravity. This combined approach of geophysical multi-techniques was able to successfully map the shape and determine the physical properties of the simulated gas phase body at a very early stage after leakage began. Techniques of FWI and ERT start to resolve CAES leakage anomalies only a few years and gravity even a few months after leakage began. Geophysical monitoring of vast areas may start by conducting time-effective aero-surveys (e.g. electromagnetic induction or gravity gradient methods) to isolate anomalous subareas of potential leakage risks. These subareas are then studied in detail using our combined high-resolution approach. In conclusion, our approach is sensitive to CAES leakages and can be used for monitoring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据