4.6 Article

Quantitative Evaluation of the Effect of Temperature on Magnetic Barkhausen Noise

期刊

SENSORS
卷 21, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/s21030898

关键词

magnetic Barkhausen noise; temperature; thermal stress; nondestructive evaluation

资金

  1. Cardiff University
  2. China Scholarship Council

向作者/读者索取更多资源

The paper presents a theoretical model to describe the effects of temperature on MBN signal, analyzing the mechanisms of direct and indirect effects under different conditions, and conducting experimental verification.
The effect of temperature on magnetic Barkhausen noise (MBN) can be divided into two types: the direct effect of temperature itself and the indirect effect of thermally induced stress. The theoretical model is proposed in this paper to describe the effects of temperature on the MBN signal. For the case considering the direct effect of temperature only, the analytical model allows the prediction of the effect of temperature on MBN profile, and, based on the model, a simple linear calibration curve is presented to evaluate the effect of temperature on MBN amplitude quantitatively. While for the case where the indirect effect of thermal stress is taken into account in addition to the direct effect, the proposed theoretical model allows the deduction of parabolic function for quantitative evaluation of the combined effect on MBN. Both effects of temperature on MBN, i.e., the direct only and the combined one, have been studied experimentally on 0.5 mm thickness non-oriented (NO) electrical steel and the adhesive structure of NO steel and ceramic glass, respectively. The reciprocal of the measured MBN peak amplitude (1/MBNp) in the first case shows a linear function of temperature, which agrees with the proposed linear calibration curve. While in the experiments considering the combined effects, 1/MBNp shows parabolic dependence on temperature, which is further simplified as a piecewise function for the practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据