4.6 Article

Modeling insulated borehole heat exchangers

期刊

ENVIRONMENTAL EARTH SCIENCES
卷 75, 期 10, 页码 -

出版社

SPRINGER
DOI: 10.1007/s12665-016-5638-x

关键词

Borehole insulation; Borehole heat exchangers; Borehole thermal energy storage

资金

  1. Deutsche Forschungsgemeinschaft (DFG) in the framework of the Excellence Initiative, Darmstadt Graduate School of Excellence Energy Science and Engineering [GSC 1070]

向作者/读者索取更多资源

In the heating sector, borehole heat exchangers have become popular for supplying renewable energy. They tap into the subsurface to extract geothermal energy for heating purposes. For advanced applications, borehole heat exchangers require insulation in the upper part of the borehole either to meet legal requirements or to improve their performance. A priori numerical heat transport models of the subsurface are imperative for the systems' planning and design. Only fully discretized models can account for depth-dependent borehole properties like insulated sections, but the model setup is cumbersome and the simulations come at high computational cost. Hence, these models are often not suitable for the simulation of larger installations. This study presents an analytical solution for the simulation of the thermal interactions of partly insulated borehole heat exchangers. A benchmark with a fully discretized OpenGeoSys model confirms sufficient accuracy of the analytical solution. In an application example, the functionality of the tool is demonstrated by finding the ideal length of a borehole insulation using mathematical optimization and by quantifying the effect of the insulation on the borehole heat exchanger performance. The presented method allows for accommodation of future advancements in borehole heat exchangers in numerical simulations at comparatively low computational cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据