4.7 Article

Assessing the effect of treated erythromycin fermentation residue on antibiotic resistome in soybean planting soil: In situ field study

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 779, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.146329

关键词

Antibiotic resistance genes; Resource utilization; Pharmaceutical industry; Soil amendment; Resistome risk score

资金

  1. National Natural Science Foundation of China [21437005]

向作者/读者索取更多资源

The study showed that treated erythromycin fermentation residue did not significantly impact the resistome and risk score in soybean planting soil, and there was no increase in soil ARG abundance and resistome risk during one-time field application at the studied dosage. Comprehensive consideration of resistome risk and multiple influencing factors is necessary for further assessment of fermentation residue application.
As a by-product in the pharmaceutical industry, antibiotic fermentation residue is expected to be able to be utilized after effectively removing the antibiotics. However, evaluation of the effect of fermentation residue application on soil, especially the in situ environmental consequences considering not only the antibiotic resistance gene (ARG) abundance but also the resistome risk, has still not been sufficiently evaluated. Herein, the impact of treated erythromycin fermentation residue (EFR) on the resistome and risk score in soybean planting soil was investigated. Treated EFR application with dosages of 3750 kg (EFR250) and 7500 kg (EFR500) per hm(2) soil did not increase the diversity (Shannon index, 2.84-3.38) or relative abundance (0.086-0.142 copies/16S rRNA gene) of the soil resistome compared with the Control (CK: 2.92-3.2, 0.088-0.096 copies/16S rRNA gene). Soil resistome risk scores calculated by metagenomic assembly, showing the dissemination potential of ARGs, ranged from 22.9 to 25.0, and were also not significantly different between treated EFR amended soil and the Control. Notably, the diversity of the resistome increased at the sprout stage (Mann-Whitney U test, P < 0.05) and the abundance of some ARG types (macrolide-lincosamide-streptogramin, aminoglycoside and tetracycline, etc.) shifted along the course of soybean growth (Kruskal-Wallis test, P < 0.05). Structural equation model analysis showed that the soybean growth period affected the composition of ARGs by affecting the microbial community, which was further supported by Procrustes analysis (P < 0.05) and metagenomic binning. Our findings emphasized that soil ARG abundance and resistome risk did not increase during one-time field application of treated EFR at the studied dosage. Comprehensive consideration including resistome risk and multiple influencing factors also should be given for further assessment of fermentation residue application. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据