4.7 Article

Co-transport and retention of zwitterionic ciprofloxacin with nano-biochar in saturated porous media: Impact of oxidized aging

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 779, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.146417

关键词

Nano biochar; Aging; Antibiotics; Sorption; Co-transport

资金

  1. National Key Research and Development Program of China [2019YFC1805300]
  2. National Natural Science Foundation of China [42007334, 42007115]
  3. special program of China Postdoctoral Science Foundation [2020T130736]
  4. China Postdoctoral Science Foundation [2019M663245]

向作者/读者索取更多资源

The geochemical aging process enhances the oxygen content and negative surface charge of nano-sized biochar, improving its specific interactions with ciprofloxacin. This leads to increased slow sorption and normalized sorption capacity. Aging also affects the aggregation and transport behavior of the biochar in porous media.
While biochar (BC) is used for contaminant remediation (i.e. antibiotics) in the field, geochemical aging can alter its chemical structure, releasing nano-sized BC (NBC, sizes ranging from approximately 200 nm to 500 nm), and further influence the environmental behaviour of antibiotics affiliated with BC. In this study, we comprehensively examined the sorption behaviour of NBCs with and without aging toward ciprofloxacin (CIP), their aggregation performance, and transport behaviour in porous media. The results showed that aging improved the oxygen-containing groups within the NBCs and made their surfaces more negatively charged. The thermodynamic enhancements of specific interactions (i.e. pi-pi interaction or Coulombic force) with CIP resulted in the enhancement of slow sorption (from 60-64% to 40-58%) and a higher normalised sorption capacity (Qe). The aggregation of NBCs was affected by changes in individual specific interactions and interfacial forces between the NBCs before and after CIP sorption. Further, aging could enhance the transport of NBCs both in the absence and presence of CIP. In addition to the interaction with the quartz sand surface, the contributions of aggregation and chemical heterogeneity caused by rebalanced specific interactions with CIP, may explain the observed transport behaviours of the aged NBCs in porous media. Additionally, the presence of NBCs, regardless of aging, suppressed the transport of CIP. Thus, mechanisms such as increased sorption sites due to aggregation and competitive sorption between NBCs and CIP, rather than the contribution of co-transport from NBCs, might play an important role in determining the fate of CIP in the natural environment. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据