4.7 Article

Diffusive gradients in thin films (DGT): A suitable tool for metals/metalloids monitoring in continental waterbodies at the large network scale

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 754, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.142147

关键词

Water quality network; Passive sampling; Metals; Metalloids; Field sampling

资金

  1. French Adour-Garonne Water Agency

向作者/读者索取更多资源

The contribution of DGT to continental water quality monitoring was evaluated in a real measurement network, showing robust field deployments and higher quantification frequency for certain elements compared to grab sampling. Despite the higher cost, the use of DGT sampling provides different but complementary information for water quality assessments, making it a valuable tool for improving monitoring networks.
The contribution of Diffusive Gradients in Thin films (DGT) passive sampling to continental water quality monitoring was assessed in a real measurement network (6 sampling campaigns, 17 stations). Ten metals/metalloids (Al, Zn, Ni, Cd, Cu, Pb, Cr, As, Se and Sb) were studied using the control laboratory's working conditions with grab and DGT passive sampling. The DGT field deployments were robust, with a 3% sampler loss rate and a <65% average relative deviation between duplicates. Compared to grab sampling, DGT showed a similar quantification frequency for half of the targeted elements but showed a higher frequency for the other half (e.g., Cd quantification at 20% with grab sampling vs. 97% with DGT). Similar concentration trends were established using DGT and grab sampling at most sites throughout the year. Notably, for some elements, trends were only provided by DGT sampling. A study of several DGT blanks showed that the device contamination was occasional and originated primarily from cross-contamination during the disassembly step. Considering this contamination, the operational sensitivity by DGT was at least between 1 and 5 times greater in comparison to that by grab sampling. Estimations of the economic cost revealed that measurement networks cost 2 to 3 times more when monitored by DGT compared to standard grab monitoring. However, the information obtained based on each type of sampling method is different. Grab sampling is easy to implement and can highlight high contamination peaks. The DGT concentrations are averaged over time and are relevant to chronic exposure evaluations. Considering the good performance of the DGT sampling highlighted in this study and its complementarity with grab sampling in terms of water quality assessments, a combination of these two types of sampling, which can be affordable, should improve the water quality evaluation within monitoring networks. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据