4.7 Article

Microcystin-LR sorption and desorption by diverse biochars: Capabilities, and elucidating mechanisms from novel insights of sorption domains and site energy distribution

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 754, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.141921

关键词

Diverse biochars; Microcystin-LR-trapping ability; Sequential desorption; Site energy distribution; Sorption; Sorption domain

资金

  1. Fundamental Research Funds for the Central Universities [2019TC065]

向作者/读者索取更多资源

The study found that maize straw biochar and chicken manure biochar performed the best in trapping MCLR, with non-partition sorption domains contributing more to MCLR sorption. Most biochars showed weakened desorption hysteresis with increasing aqueous MCLR amount.
This study accurately assessed microcystin-LR (MCLR)-trapping capabilities of diverse biochars based on sorption and sequential desorption (SDE), and elucidated MCLR sorption-desorption mechanisms from novel views of sorption domains and site energy distribution along sorption-SDE process. Results showed that maize straw bio char (MSB) and chicken manure biochar (CMB) excelled in trapping MCLR (91.0%-97.4% and 85.7%-96.4%, respectively, at 60-600 mu g/L of initial MCLR amount), followed by their respective HCl-treated ones (HCMB, HSMB), while HCl-treated bamboo biochar and pine sawdust biochar poorly trapped MCLR (48.9%-77.8% for HBB, 22.6%-67.2% for HPSB). Non-partition sorption domains (NPSD) contributed more than partition sorption domain (PSD) to MCLR sorption by each biochar. Higher NPSD contribution to MCLR sorption in CMBs and MSBs than other biochars resulted from their higher pHPZC and mesoporosity, which provided stronger electrostatic and pore-filling interaction for MCLR. Desorption hysteresis was weaken with rising aqueous MCLR amount for most biochars. Along SDE process, remaining MCLR in PSD of MSBs, HPSB and HBB could transfer to NPSD, thus desorption ratio continuously decreased with increasing desorption cycle. Differently, remaining MCLR in NPSD of CMBs converted into PSD during 1st-3rd desorption, causing fluctuated desorption ratio without obvious decrease as desorption cycle increased. These implied that MCLR in PSD was more easily desorbed than NPSD for each biochar. Site energy distribution dynamics supported the results of PSD and NPSD contribution changes along SDE. This study was greatly implicated in cost-efficient emergent MCLR-pollution remediation and deeply understanding MCLR sorption-desorption mechanisms of diverse biochars. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据