4.7 Article

Influence of shrub willow buffers strategically integrated in an Illinois corn-soybean field on soil health and microbial community composition

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 772, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.145674

关键词

Bioenergy crops; Ecosystem services; Landscape design; Marginal land; Row crop production systems; Nutrient cycling

资金

  1. U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (BETO) [DE-EE0022598]
  2. DOE [DE-AC02-06CH11357]

向作者/读者索取更多资源

This study integrated shrub willow buffers into a corn-soybean cropping system to reduce nitrate-N leaching from grain crop production. It was found that landscape position plays a significant role in soil chemical properties, shrub willow's influence and productivity, and the provision of additional ecosystem services. The combination of crop type and landscape position influenced the species composition of the soil microbial community, emphasizing the potential application of shrub willow buffers for ecosystem service provision.
Soil serves many important ecological functions and is an integral part of our existence as a society. However, concerns for soil health are growing globally, in part due to the negative impacts of agricultural management on soil resources. The production of perennial bioenergy crops on marginal land in row-crop production systems is one solution that could improve land-use efficiency and address the sustainability of cropland management. Because the relationship between crop management and the environment is complex, more research is needed to evaluate the potential benefits perennial bioenergy crop production has on soil health, as well as other ecosystem services. In this study, shrub willow buffers were strategically integrated into a corn-soybean cropping system with the main objective of reducing nitrate-N leaching from grain crop production while producing biomass for bioenergy. Two buffer systems (defined by landscape positions) were included for comparison, one on marginal land with exposure to nitrate-N leaching from upslope grain (southern plots) and one on fertile soils with less nitrate-N leaching potential (northern plots). Evaluation of soil (chemistry, bulk density, microbial community) and shrub willow vegetation properties ( fine roots, leaf litter decomposition, and nutrient uptake dynamics), showed that landscape position plays an important role in (1) the dynamics of soil chemical properties, (2) shrub willow's influence and productivity, and (3) the provision of additional ecosystem services such as reductions in nitrous oxide emissions and nitrate-N leaching. In addition, the combination of crop type and landscape position (N-grain, N-willow, S-grain, and S-willow) influenced the species composition of the soil microbial community, resulting in unique and identifiable communities. These results highlight the potential application of shrub willow buffers for ecosystem service provision and support of ecosystem processes; however, understanding the relationship between the microbial community, crop type, and landscape is important for understanding the sustainability of the design. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据