4.7 Article

Responses of bacterial communities and organic matter degradation in surface sediment to Macrobrachium nipponense bioturbation

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 759, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.143534

关键词

Bioturbation; Organic matter degradation; Bacterial communities; Functional prediction; Sediment; Macrobrachium nipponense

资金

  1. Natural Science Foundation of Jiangsu Province, China [BK20180173]
  2. Modern Agriculture Industrial Technology System Special Project - the National Technology System for Conventional Freshwater Fish Industries [CARS-45]
  3. National Natural Science Foundation of China [31802302]

向作者/读者索取更多资源

The study found that the bioturbation of Macrobrachium nipponense significantly promoted the degradation of organic matter in sediments during a 90-day incubation experiment, providing better conditions for OM degradation and altering bacterial composition to enhance the degradation process.
The excessive accumulation of organicmatter (OM) in sediments in aquaculture ponds is a potential environmental threat due to the risk of endogenous water pollution and eutrophication. From the perspective of inhibiting OM accumulation to prevent endogenous water pollution, the present study investigated the OM degradation states, variations of bacterial communities and basic environmental factors in sediments with/without Macrobrachium nipponense treatment/control groups in triplicate for effects of bioturbation on OM degradation in 90-day incubation. The total organic carbon (TOC) and total nitrogen (TN) in the M. nipponense treatment were higher than in the control at the 30th and 60th days, while no significant differences between treatment and control were found at the end of the experiment. Significantly higher oxidation-reduction potential (ORP) and more extensively degraded OM were observed in the M. nipponense treatment. Eleven significantly differential bacterial taxa were enriched in the sediments of M. nipponense treatment, of which eight (Actinobacteria, Chitinophagales, Chitinophagaceae, Flavihumibacter, Marinilabiliaceae, Cytophaga xylanolytica group, Christensenellaceae, and Christensenellaceae R-7 group) were significantly correlated with at least two OM degradation indicators. The functional groups chemoheterotrophy, aerobic chemoheterotrophy, xylanolysis, ureolysis, and intracellular parasiteswere enhanced by M. nipponense and were negatively correlated with OM degradation indictors. Overall, the M. nipponense bioturbation effectively increased the ORP to provide better conditions for OM degradation, altered the taxonomic composition and functional groups to enhance the bacterial ability for OM degradation, and finally promoted the OM degradation of the surface sediment in an artificial aquaculture system. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据