4.7 Article

Base flow in the Yarlungzangbo River, Tibet, maintained by the isotopically-depleted precipitation and groundwater discharge

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 759, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.143510

关键词

Yarlungzangbo River; Groundwater; Base flow; Isotopes; Tensile faults; Tibet

资金

  1. National Natural Science Foundation of China [91747203, 41872074]

向作者/读者索取更多资源

The extension-induced rift systems on the Tibetan Plateau may convey groundwater to rivers, with 27% to 40% of the flow in the Yarlungzangbo River contributed by groundwater from NE-SW-trending rifts in the middle reach. Isotopic and chemical compositions of the waters suggest modification by a variety of possible origins, such as glacier melt and groundwater discharge, pointing to paleo-precipitation as a significant source.
The extension-induced rift systems on the Tibetan Plateau (TP) may convey large amount of groundwater to rivers, but sources and flow paths of such groundwater are unknown. The Yarlungzangbo River (YR) is the only large river that traverses the southern Tibetan plateau from west to east, following one major suture zone that is cut by extensional normal faults. The faults could influence the flow paths of groundwater discharging to the river. In this study, O and H isotopes, major ions and Rn-222 concentrations are analyzed along the YR, and interpreted in relation to structural geology and tectonics. The YR exhibits an abrupt change of isotopic and chemical compositions along with a large increase in flow where the middle reach intersects NE-SW-trending rifts. Low values of delta D and delta O-18 and high concentrations of major ions and Rn-222 in the middle reach show that waters are modified isotopically and chemically by a variety of possible water origins, such as recharge of high-altitude glacier melt and discharge from groundwater. Groundwater contributes 27 to 40% of the river flow in the middle reach. Isotopically-light meltwater from high-altitude glacier melt cannot account for the isotope composition of the present outflow of groundwater. The O and H isotope data in the YR and discharging groundwater can be well explained by the groundwater originated as paleo-precipitation during a cooler time, such as the late Pleistocene to early Holocene. The paleo-groundwater discharge can account for about 36 x 10(8) m(3) water budget unbalance in the middle reach. The study provides the first clear isotope evidence for the source of groundwater discharge into a large river through favorable conduits in large-scale active tensile fault zones and confirms the regional scale of groundwater flow on the Tibetan Plateau. Understanding the characteristics and changes of streamflow and surface-groundwater circulation on the Tibetan Plateau will help to manage water resources under a changing environment. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据