4.7 Article

Application of enzymatic calcification for dust control and rainfall erosion resistance improvement

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 759, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.143468

关键词

Enzymatically induced carbonate precipitation; Polyvinyl acetate; Dust; Rainfall erosion; Stable structure

资金

  1. National Natural Science Foundation of China [51578147]
  2. Fundamental Research Funds for the Central Universities [2242020R20025]
  3. Science and Technology Department of Ningxia [2020BFG02014]

向作者/读者索取更多资源

This study utilized a combination of EICP and PVAc technologies to effectively control dust pollution on slopes. By optimizing the ratio of urease solution to cementation solution, the stability and erosion resistance of dust slopes were improved, resulting in reduced soil loss and stronger surface strength.
Globally, most cities are facing severe challenges associated with dust pollution and it is of great significance to propose an effective and environmentally friendly dust control method. This study used enzymatically induced calcite precipitation (EICP) technology for dust control. Moreover, polyvinyl acetate (PVAc) was added to the cementation solution to improve its rainfall erosion resistance. The results showed that the optimum ratio of urease solution to cementation solution differed according to the concentrations of reactants in the cementation solution. Under combined EICP and PVAc (50 g/L) treatment, the stability of the dust-slope significantly improved. Moreover, little dust soil loss was washed out by simulated rainfall because of the more stable spatial structure of CaCO3 precipitation. Furthermore, PVAc addition increased the surface strength of slopes, while the cemented layer became thinner. With this combined EICP and PVAc (50 g/L) treatment, in a field test, the treated area of the slope had higher surface strengths and stronger erosion resistance than untreated areas. These higher surface strengths were attributed to the smaller particle size, and the stronger cementing effect of grass seeds. These results demonstrated that EICP-PVAc treatment significantly controlled dust and mitigated surface erosion of dust-slopes. This represents promising potential for the prevention of dust pollution. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据