4.7 Article

Understanding dynamics of population flood exposure in Canada with multiple high-resolution population datasets

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 759, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.143559

关键词

Flood exposure; Flood hazard; Flood risk management; Global population datasets; Hydrodynamic flood modeling; Vulnerability

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Institute for Catastrophic Loss Reduction (ICLR)

向作者/读者索取更多资源

This study utilizes global population datasets and census data to understand the dynamics and differences in population flood exposure in Canada; finds that approximately 9% and 11% of the Canadian population reside within 1 in 100-yr and 1 in 200-yr floodplains; highlights the excellent performance of WorldPop and LandScan, while Global Human Settlement and Gridded Population of the World show large deviations in most cases.
In recent years, geospatial data (e.g. remote sensing imagery), and other relevant ancillary datasets (e.g. land use land cover, climate conditions) have been utilized through sophisticated algorithms to produce global population datasets. With a handful of such datasets, their performances and skill in flood exposure assessment have not been explored. This study proposes a comprehensive framework to understand the dynamics and differences in population flood exposure over Canada by employing four global population datasets alongside the census data from Statistics Canada as the reference. The flood exposure is quantified based on a set of floodplain maps (for 2015, 1 in 100-yr and 1 in 200-yr event) for Canada derived from the CaMa-Flood global floodmodel. To obtain further insights at the regional level, the methodology is implemented over six flood-prone River Basins in Canada. We find that about 9% (3.31 million) and 11% (3.90 million) of the Canadian population resides within 1 in 100-yr and 1 in 200-yr floodplains. We notice an excellent performance of WorldPop, and LandScan in most of the cases, which is unaffected by the representation of flood hazard, while Global Human Settlement and Gridded Population of the World showed large deviations. At last, we determined the long-term dynamics of population flood exposure and vulnerability from 2006 to 2019. Through this analysis, we also identify the regions that contain a significantly larger population exposed to floods. The relevant conclusions derived from the study highlight the need for careful selection of population datasets for preventing furtheramplification of uncertainties in flood risk. We recommend a detailed assessment of the severely exposed regions by including precise ground-level information. The results derived from this study may be useful not only for flood risk management but also contribute to understanding other disaster impacts on human-environment interrelationships. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据