4.7 Article

Route of exposure influences pesticide body burden and the hepatic metabolome in post-metamorphic leopard frogs

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 779, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.146358

关键词

Amphibians; Dermal routes; Pesticides; Body burden; Biomarkers

向作者/读者索取更多资源

The study investigated the impact of exposure route on pesticide bioavailability and body burden in amphibians. Results showed significantly higher body burden concentrations for amphibians exposed in water compared to those exposed in soil, with the majority of metabolites expressing higher abundance in water-exposed amphibians.
Pesticides are being applied at a greater extent than in the past. Once pesticides enter the ecosystem, many environmental factors can influence their residence time. These interactions can result in processes such as translocation, environmental degradation, and metabolic activation facilitating exposure to target and non-target species. Most anurans start off their life cycle in aquatic environments and then transition into terrestrial habitats. Their time in the aquatic environment is generally short; however, many important developmental stages occur during this tenure. Post-metamorphosis, most species spend many years on land but migrate back to the aquatic environment for breeding. Due to the importance of both the aquatic and terrestrial environments to the life stages of amphibians, we investigated how the route of exposure (i.e., uptake from contaminated soils vs. uptake from contaminated surface water) influences pesticide bioavailability and body burden for four pesti-cides (bifenthrin (BIF), chlorpyrifos (CPF), glyphosate (GLY), and trifloxystrobin (TFS)) as well as the impact on the hepatic metabolome of adult leopard frogs (Gosner stage 46 with 60-90 days post-metamorphosis). Body burden concentrations for amphibians exposed in water were significantly higher (ANOVA p < 0.0001) compared to amphibians exposed to contaminated soil across all pesticides studied. Out of 80 metabolites that were putatively identified, the majority expressed a higher abundance in amphibians that were exposed in pesticide contaminated water compared to soil. Ultimately, this research will help fill regulatory data gaps, aid in the creation of more accurate amphibian dermal uptake models and inform continued ecological risk assessment efforts. (c) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据