4.7 Article

Electro-kinetic washing of a soil contaminated with quinclorac and subsequent electro-oxidation of wash water

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 761, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.143204

关键词

Quinclorac; Soil remediation; Electro-kinetic soil washing; Electrochemical advanced oxidation processes; Boron-doped diamond

资金

  1. ANID (Agencia Nacional de Investigacion y Desarrollo, Chile) [3190046, 1181456]

向作者/读者索取更多资源

This study successfully removed Quinclorac from soil using an electro-kinetic soil washing system (EKSW) and achieved complete degradation and mineralization of the pesticide through electro-oxidation (EO) in the cathodic and anodic wells. This coupled remediation technology is not only effective but also environmentally friendly.
This work deals with the remediation of a soil that has been enriched with Quinclorac (QNC), one of the herbicides most used in Chile for weed control in rice fields. Quinclorac damages the microflora and macrofauna of soils and is toxic to some susceptible crops, which results in economic loses during crop rotation. Furthermore, Quinclorac a potential contaminant of water resources and soils, given its high mobility and persistence. This has created the need to lower its concentrations in soils intensively cultivated. In this study, an electro-kinetic soil washing system(EKSW) for mobilizing this pesticide in the soil was explored. The performance of this technology was compared by assessing the effect of direct (DP) and reverse (RP) polarity during 15 days under potentiostatic conditions and applying an electric field of 1 V cm(-1) between electrodes. Among the main results, the highest removal of QNC was obtained through the EKSW-RP process, which also contributed to the prevention of acidity and alkaline fronts in the soil, compared to the EKSW-DP system. In both cases, the highest accumulation of QNC occurred in the cathodic well by mobilizing the non-ionized contaminant through the electroosmotic flow (EOF) from anode to cathode. After the treatment with EKSW, the wash water accumulated in the anodic and cathodic wells, which contained an important concentration of pesticide, was subjected to electro-oxidation (EO) by applying different current densities (j). The high generation of center dot OH on the surface of a boron-doped diamond electrode (BDD) allowed for the complete degradation and mineralization of QNC and its major intermediate compounds to CO2. The results of this study show that the application of both coupled stages in this type of remediation technologies would enable the removal of QNC from the soil without altering its chemical and physical properties, constituting an environmentally friendly process. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据