4.7 Article

Recent advances in visible-light-driven carbon dioxide reduction by metal-organic frameworks

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 762, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.144101

关键词

Visible-light-driven; CO2; Reduction; MOFs; Photocatalysis

资金

  1. DST, New Delhi [DST/TM/WTI/WIC/2K17/124]
  2. Malaviya National Institute of Technology, Jaipur

向作者/读者索取更多资源

Metal-organic frameworks (MOFs) have unique chemical and physical properties, making them promising materials for applications in reducing carbon dioxide emissions. They have shown potential as photocatalysts for converting CO2 into valuable products, providing a solution for global warming concerns.
Metal-organic frameworks (MOFs) have emerged as promising materials and have attracted researchers due to their unique chemical and physical properties-design flexibility, tuneable pore channels, a high surface-to-volume ratio that allow their distinct application in diverse research fields-gas storage, gas separation, catalysis, adsorption, drug delivery, ion exchange, sensing, etc. The rapidly growing CO2 in the atmosphere is a global concern due to the excessive use of fossil fuels in the current era. CO2 is the prime cause of global warming and should be ameliorated either through adsorption or conversion into value-added products to protect the environment and mankind. Nowadays, MOFs are exploited as a photocatalyst for applications of CO2 reduction. Since the use of semiconductors limits the use of visible light for photocatalytic reduction of CO2, MOFs are promising options. The current review describes recent development in the application of MOFs as host, composites, and their derivatives in photocatalytic reduction of CO2 to CO and different organic chemicals (HCOOH, CH3OH, CH4). Efficient charge separation and visible light absorption by incorporation of active sites for efficient photocatalysis have been discussed. The selection of material for high CO2 uptake and potential strategies for the rational design and development of high-performance catalysts are outlined. Major challenges and future perspectives have also been discussed at the last of the review. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据