4.7 Review

Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 762, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.144590

关键词

Microalgae; Wastewater treatment; Photosynthesis; Metabolisms; Carbon; Nitrogen; Phosphorus

向作者/读者索取更多资源

Wastewater is not only a waste but also a source of energy and resources. Microalgae-based wastewater treatment is gaining attention for effectively redirecting nutrients from wastewater to biomass accumulation. Furthermore, microalgae are utilized in human consumption and animal feed due to their high nutritional value.
Threats posed to humans - including environmental pollution, water scarcity, food shortages, and resource crises drive a new concept to think about wastewater and its treatment. Wastewater is not only a waste but also a source of energy, renewable and/or non-renewable resources, including water itself. The nutrient in wastewater should not only be removed but also need to be upcycled. Microalgae based wastewater treatment has attracted considerable interests because algae have the potential to efficiently redirect nutrients from wastewater to the accumulated algal biomass. Additionally, microalgae are commercialized in human consumption and animal feed owing to their high content of essential amino and fatty acids, vitamins, and pigments. The whole process establishes a circular economy, totally relying on the ability of microalgae to uptake and store nutrients in wastewater, such as carbon (C), nitrogen (N), and phosphorus (P). It makes the study of the mechanisms underlying the uptake and storage of nutrients in microalgae of great interest. This review specifically aims to summarize C, N, and P metabolisms in microalgae for a better understanding of the microalgae-based wastewater treatment from the nutrient uptake pathway, and examine the key physiological factors or the operating conditions related to nutrient metabolisms that may affect the treatment efficiency. At last, I discuss the potential approaches to enhance the overall treatment performance by adjusting the critical parameters for C, N, and P metabolisms. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据