4.7 Article

Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs

期刊

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
卷 121, 期 -, 页码 66-74

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2015.04.001

关键词

Blue light; Dose-response; Cucumis sativus; Light emitting diode; Dry mass

资金

  1. USDA NIFA SCRI [2010-51181-21369]

向作者/读者索取更多资源

Light emitting diodes (LEDs) are frequently regarded as a new light source for the production of horticultural crops under closed-type conditions. However, before use of LEDs as the sole source of light can be advanced, plant responses to light quality have to be investigated for important horticultural plants. The objective of the present study was to evaluate cucumber (Cucumis sativus) seedlings physiological responses to different blue (B) and red (R) photon flux (PF) ratios using LEDs. Cucumber seedlings (cv. Cumlaude) were grown in a growth chamber until the second true leaf stage (17 days) with LED lighting and 18-h photoperiod. The treatments consisted of 100 mu mol m(-2) s(-1) photosynthetic photon flux (PPF) with B:R PF ratios of 0B:100R%, 10B:90R%, 30B:70R%, 50B:50R%, 75B:25R%, 100B:0R%. Another treatment consisted of B, green (G) and R PF ratio of 20B:28G:52R%. Peak wavelengths of LEDs were 455 nm (B) and 661 nm (R) for the in the B:R treatments and 473 nm (B), 532 nm (G), 660 nm (R) in the B:G:R treatment. Hypocotyl length decreased with the increase of B PF up to the 75B:25R% treatment. Hypocotyl length in the OB:100R% treatment was 164% greater than in the 75B:25R treatment. Plants under the 100B:0R% treatment had unexpected greater plant height, hypocotyl, and epicotyl length than plants under all other treatments. For example, the hypocotyl length under the 10 OB:0R% was 69% greater than in the 0B:100R treatment and 346% greater than in the 75B:25R% treatment. Leaf area decreased with the increase of B PF when plants were irradiated with the combination of B and R PF. The response of leaf area under the 100B: 0R% treatment was unexpected since plants in the 100B:0R% treatment had 48% greater leaf area than plants in the 75B:25R% treatment. Chlorophyll content per leaf area, net photosynthetic rate, and stomatal conductance increased with the increase of B PF. Shoot dry and fresh mass decreased with the increase of B PF when plants were irradiated with the combination of B and R PF. Plants under OB:100R% had the lowest dry and fresh mass from all the treatments and plants under 100B:0R% showed the greatest fresh mass from all the treatments and equal dry mass as the plants under 10B:90R% treatment. The addition of G PF to the spectrum did not have any influence in cucumber plant responses. For cucumber seedlings, morphological responses influenced plant growth since B PF responses in growth parameters (i.e., dry mass) closely matched those in morphological parameter (i.e., leaf area). More research is needed to find the optimal spectrum for the growth and development of horticultural crops under sole source electrical lighting such as LEDs. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据