4.7 Article

NaCl-induced changes of ion homeostasis and nitrogen metabolism in two sweet potato (Ipomoea batatas L.) cultivars exhibit different salt tolerance at adventitious root stage

期刊

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
卷 129, 期 -, 页码 23-36

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2015.12.006

关键词

Ipomoea batatas; Salt stress; Ion fluxes; K+ and Mg2+ retention; NH4+ efflux; NO3- influx; N assimilation

资金

  1. National Natural Science Foundation of China [31200470, 31271698]
  2. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  3. Qing Lan Project
  4. Natural Science Foundation of Jiangsu Province [BK2012579]
  5. key project of Natural Science Fund for Colleges and Universities in Jiangsu Province [12KJA180001]
  6. Scientific Research Projects of Xuzhou City [XF13C056]

向作者/读者索取更多资源

Efficient control of ion homeostasis and nitrogen (N) metabolism contributes to the salt tolerance in crops. However, limited information is available on the contribution of ion homeostasis and N metabolism regulation towards salt tolerance in sweet potato (Ipomoea batatas L.) cultivars at adventitious root stage. In this study, NaCl-induced ion homeostasis and N metabolism changes in adventitious roots of two different sweet potato cultivars were investigated. Salt tolerant cultivar (Xushu 22, Xu 22) exhibited better capacity controlling Na+, Cl-, K+ and Mg2+ homeostasis than the salt sensitive cultivar (Xushu Shi 5, Shi 5) under prolonged salinity condition. Net H+ efflux and plasma membrane H+-ATPase gene expression were significantly enhanced in NaCl-stressed Xu 22 roots but not in Shi 5 roots. Salt-upregulated PM H+-ATPase contributed to less K+ efflux in Xu 22 roots. NaCl stimulated Mg2+ uptake in Xu 22 roots under prolonged salinity, but promoted Mg2+ efflux in Shi 5 roots. In addition, NaCl significantly enhanced transcript abundance of genes related to vacuolar Na+ and Cl- sequestration in Xu 22 roots. In Xu 22 roots, NaCl triggered an obvious net NH4+ efflux, which caused a rapid increase of NH4+. concentration around the rhizosphere. Exogenous supply of NH4+ markedly inhibited Na+ influx and K+ efflux under salt shock condition. Moreover, a salt-enhanced NO3- net influx was also detected in mature Xu 22 root region and this process may contributes to the normal N assimilation in this cultivar under prolonged saline condition. Taken together, our results suggest that the better capacities of root K+ and Mg2+ retention, vacuolar Na+ and Cl- sequestration, transition of NH4+/NO3- transport and N assimilation maintenance contribute to the salt tolerance of Xu 22 at adventitious root stage. A model showing salt adaptive mechanisms in salt-tolerant Xu 22 is proposed. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据