4.8 Review

Anion exchange polyelectrolytes for membranes and ionomers

期刊

PROGRESS IN POLYMER SCIENCE
卷 113, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.progpolymsci.2020.101345

关键词

Anion exchange polyelectrolytes (AEPs); Anion exchange membranes (AEMs); Anion exchange ionomers (AEIs); Anion exchange membrane fuel cells (AEMFCs); Peak power density; Durability

资金

  1. Technology Development Program to Solve Climate Change through the National Research Foundation of Korea (NRF) - Ministry of Science and ICT [NRF-2018M1A2A2061979]
  2. Technology Innovation Program through the Korea Evaluation Institute of Industrial Technology (KEIT) - Ministry of Trade, Industry & Energy (MOTIE) of South Korea [20010955]
  3. Korea Evaluation Institute of Industrial Technology (KEIT) [20010955] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Anion exchange membrane fuel cells (AEMFCs) are considered a low-cost alternative to proton exchange membrane fuel cells (PEMFCs) for clean energy conversion, as they utilize non-platinum group metals as electrocatalysts under alkaline conditions. The development of high-performance anion-exchange polyelectrolytes (AEPs) has led to significant progress in power density and durability of AEMFCs, making them comparable to or even better than PEMFCs.
Anion exchange membrane fuel cells (AEMFCs) have attracted great interest as a low-cost fuel cell technology for clean energy conversion and utilization for the future. AEMFCs have been considered the most promising succedaneum to proton exchange membrane fuel cells (PEMFCs) for addressing the cost issues associated with PEMFCs due to utilizing non-platinum group metals as electrocatalysts under alkaline conditions (such as Ag, Ni, and Co). Herein, we focus on a critical topic of AEMFCs--anion-exchange polyelectrolytes (AEPs)-which are essential materials for low-cost AEMFCs. Specifically, AEPs have been used as anion-exchange membranes (AEMs) and binders (or ionomers) in AEMFCs. Years of study have allowed AEMFCs to recently achieve unprecedented progress, specifically in terms of power density and durability. These properties are comparable to or higher thanPEMFCs due to the recent development of high performance AEPs. Currently, most AEPs focused on the application of AEMs, and the importance of ionomer research has not been widely recognized. Moreover, a comprehensive review involving a systematic performance comparison of the state-of-the-art AEMs and ionomers is still lacking, making future research on AEMFCs unclear. This review systematically and comprehensively summarizes the development of AEPs and highlights the importance of cationic species and polymer backbone structures on durability with an emphasis on the importance of ionomer research. We further describe the differences between AEMs and ionomers by comparing the advantages and disadvantages of the state-of-the-art AEMs and ionomers to accurately guide future research on AEMFCs. We cover synthetic methods, degradation mechanisms, strategies to enhance performance, water transport behaviors, structure design criteria, and new challenges for AEMs and ionomers. This review is expected to expand further understanding of AEMs and ionomers and provide a future direction for designing AEMs and ionomers for future AEMFCs. (c) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ )

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据