4.6 Article

Dye wastewater treatment and hydrogen production in microbial electrolysis cells using MoS2-graphene oxide cathode: Effects of dye concentration, co-substrate and buffer solution

期刊

PROCESS BIOCHEMISTRY
卷 102, 期 -, 页码 51-58

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.procbio.2020.12.008

关键词

MEC; Dye wastewater; Co-substrate; Buffer solution; MoS2-graphene oxide cathode; Hydrogen production

资金

  1. National Natural Science Foundation of China [21707021, 51668006]
  2. Natural Science Foundation of Guangxi [2017GXNSFBA198186]
  3. China Postdoctoral Science Foundation [2018M633295]
  4. Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control [KF201723, 2019KF19]
  5. Young Teachers Innovation Cultivation Program from Guangxi Bossco Environmental Protection Technology Co., Ltd. [BRP180261]

向作者/读者索取更多资源

The single-chamber microbial electrolysis cell (MEC) with MoS2-GO nickel foam cathode showed excellent performance for hydrogen production and alizarin yellow R (AYR) decolorization. The use of NaAc + glucose co-substrate and PBS buffer led to improved hydrogen production and COD removal. Results suggest the potential of MECs for simultaneous dye removal and clean energy production.
A single-chamber microbial electrolysis cell (MEC) constructed with MoS2-GO nickel foam (NF) cathode was established for alizarin yellow R (AYR) decolorization and hydrogen production, and influences of AYR initial concentration, co-substrate and buffer on MECs performances were determined. The cathode was obtained by in situ growing MoS2-GO on NF. Physico-chemical and electrochemical characterizations showed that MoS2-GO NF cathode exhibited superior performance towards catalytic hydrogen evolution. The decolorization efficiency of similar to 90 % within 10 h was achieved with AYR initial concentrations ranging from 30 to 150 mg/L (PBS + NaAc medium), indicating that MECs performances were not severely inhibited as the mutual impact between electrochemically active bacteria (EAB) and azo dye decolorization. Improved hydrogen production (0.183 m(3)/d/m(3)) and COD removal (92.44%) were obtained with NaAc + glucose co-substrate and PBS buffer, owing to lower cathodic potential, desired solution conductivity for charge transfer, and better growth of microbial communities under neutral condition. Besides, better MECs performances were obtained when using NaHCO3 as buffer, compared to Na2CO3, as milder environment could be provided for microbial growth by NaHCO3. Findings in this study could promote application potential of MECs for synchronous dye removal and clean energy production with proper operations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据