4.8 Article

Complexity and graded regulation of neuronal cell-type-specific alternative splicing revealed by single-cell RNA sequencing

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2013056118

关键词

alternative splicing; neuronal cell type diversity; single-cell RNA-sequencing; RNA-binding proteins; graded regulation

资金

  1. NIH [S10OD012351, S10OD021764]

向作者/读者索取更多资源

The study reveals distinct splicing programs between glutamatergic and GABAergic neurons, as well as between subclasses within each neuronal class, showing differential splicing at multiple hierarchical levels. The results suggest graded regulation of alternative splicing across neuronal cell types, providing a mechanism to specify neuronal identity and function orthogonal to transcriptional regulation.
The enormous cellular diversity in the mammalian brain, which is highly prototypical and organized in a hierarchical manner, is dictated by cell-type-specific gene-regulatory programs at the molecular level. Although prevalent in the brain, the contribution of alternative splicing (AS) to the molecular diversity across neuronal cell types is just starting to emerge. Here, we systematically investigated AS regulation across over 100 transcriptomically defined neuronal types of the adult mouse cortex using deep single-cell RNA-sequencing data. We found distinct splicing programs between glutamatergic and GABAergic neurons and between subclasses within each neuronal class. These programs consist of overlapping sets of alternative exons showing differential splicing at multiple hierarchical levels. Using an integrative approach, our analysis suggests that RNA-binding proteins (RBPs) Celf1/2, Mbnl2, and Khdrbs3 are preferentially expressed and more active in glutamatergic neurons, while Elavl2 and Qk are preferentially expressed and more active in GABAergic neurons. Importantly, these and additional RBPs also contribute to differential splicing between neuronal subclasses at multiple hierarchical levels, and some RBPs contribute to splicing dynamics that do not conform to the hierarchical structure defined by the transcriptional profiles. Thus, our results suggest graded regulation of AS across neuronal cell types, which may provide a molecularmechanism to specify neuronal identity and function that are orthogonal to established classifications based on transcriptional regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据