4.8 Article

Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2026414118

关键词

deployable and morphable 3D mesostructures; Lorentz force; magnetic force; mechanically guided assembly; instability

资金

  1. National Natural Science Foundation of China [12002189]
  2. Tsinghua University Initiative Scientific Research Program [2019Z08QCX10]
  3. Henry Fok Education Foundation [2019GQG1012]
  4. China Postdoctoral Science Foundation [2019M650649]

向作者/读者索取更多资源

This study proposes a method for achieving deformable structures at the millimeter scale using electromagnetic actuation and design strategies, overcoming challenges in traditional materials and small-scale deployable and morphable structures. By designing custom low-rigidity 3D structures, remote-controlled electromagnetic actuation can be achieved to obtain rapid, reversible deformation effects, as well as reconfigurable mesostructures.
Structures that significantly and rapidly change their shapes and sizes upon external stimuli have widespread applications in a diversity of areas. The ability to miniaturize these deployable and morphable structures is essential for applications in fields that require high-spatial resolution or minimal invasiveness, such as biomechanics sensing, surgery, and biopsy. Despite intensive studies on the actuation mechanisms and material/structure strategies, it remains challenging to realize deployable and morphable structures in high-performance inorganic materials at small scales (e.g., several millimeters, comparable to the feature size of many biological tissues). The difficulty in integrating actuation materials increases as the size scales down, and many types of actuation forces become too small compared to the structure rigidity at millimeter scales. Here, we present schemes of electromagnetic actuation and design strategies to overcome this challenge, by exploiting the mechanics-guided three-dimensional (3D) assembly to enable integration of current-carrying metallic or magnetic films into millimeter-scale structures that generate controlled Lorentz forces or magnetic forces under an external magnetic field. Tailored designs guided by quantitative modeling and developed scaling laws allow formation of low-rigidity 3D architectures that deform significantly, reversibly, and rapidly by remotely controlled electromagnetic actuation. Reconfigurable mesostructures with multiple stable states can be also achieved, in which distinct 3D configurations are maintained after removal of the magnetic field. Demonstration of a functional device that combines the deep and shallow sensing for simultaneous measurements of thermal conductivities in bilayer films suggests the promising potential of the proposed strategy toward multimodal sensing of biomedical signals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据