4.7 Article

Optimization of chemical and enzymatic hydrolysis for production of chicken blood protein hydrolysate rich in angiotensin-I converting enzyme inhibitory and antioxidant activity

期刊

POULTRY SCIENCE
卷 100, 期 5, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.psj.2021.101047

关键词

chicken red blood cell; alcalase; degree of hydrolysis; DPPH scavenging; ACE inhibition

资金

  1. CSIR-CFTRI, Mysore, India
  2. UGC, New Delhi

向作者/读者索取更多资源

Response surface methodology was used to optimize hydrolysis conditions for the production of antioxidant and ACE inhibitory peptides from chicken red blood cells by both enzymatic and acid hydrolysis. The study indicated that both chemical and enzymatic methods can successfully hydrolyze chicken red blood cells to obtain hydrolysates with antioxidant and ACE inhibitory activity.
Response surface methodology was adopted to optimize hydrolysis conditions for the production of antioxidant and angiotensin-I converting enzyme (ACE) inhibitory peptides from chicken red blood cells by both enzymatic and acid hydrolysis. During acid hydrolysis, temperature (P < 0.001) and acid concentration (P < 0.001) influenced the degree of hydrolysis (DH%) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of the hydrolysate while ACE inhibitory activity of the hydrolysate was strongly influenced by acid concentration (P < 0.001). Temperature and time of hydrolysis had no effect (P 0.05) on the ACE inhibitory activity of the hydrolysate. Acid hydrolysis conditions of 50 degrees C, 32 h, and 0.03 N hydrochloric acid resulted in optimum DH% (33.1%), optimum DPPH scavenging activity (46%), and optimum ACE inhibitory activity (43.7%) of the hydrolysate. During enzymatic hydrolysis of chicken red blood cells, DH% was influenced by the temperature of hydrolysis (P < 0.001) and enzyme concentration (P < 0.001). DPPH scavenging of the hydrolysate was marginally (P < 0.05) influenced by the temperature of hydrolysis and ACE inhibitory activity of the hydrolysate was highly influenced by temperature (P < 0.001) and enzyme concentration (P < 0.001). Enzyme hydrolysis conditions of 60 degrees C, 150 min, and 2.5% alcalase resulted in maximum DH% of 63.9%, while the highest DPPH scavenging activity (75%) of hydrolysate was observed under the hydrolysis conditions of 60 degrees C, 30 min, and 2.5% of the enzyme. Optimum ACE inhibitory activity (45%) of the hydrolysate was achieved at hydrolysis conditions of 2.5% alcalase, 120 min of hydrolysis at 60 degrees C. ACE inhibitory activity of the enzymatically hydrolyzed product was directly proportional to DH%, while DPPH activity was inversely proportional to DH%. DPPH scavenging activity of the acid hydrolysate was recorded at a lower range (34.8-56.9%) compared to the enzyme hydrolysate (40.4-77.4%), while ACE inhibitory activity of both the hydrolysates was observed in the same range (18.7-49.4 and 14.2-47.7% for acid and enzyme hydrolysate, respectively). This study indicated that chicken red blood cells could be successfully hydrolyzed by both chemical and enzymatic methods to obtain hydrolysates having antioxidant and ACE inhibitory activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据