4.4 Article

Preparation and properties of silicone rubber materials with foam/solid alternating multilayered structures

期刊

POLYMER JOURNAL
卷 53, 期 5, 页码 619-631

出版社

SPRINGERNATURE
DOI: 10.1038/s41428-020-00439-x

关键词

-

资金

  1. National Natural Science Foundation of China [51773186]

向作者/读者索取更多资源

Silicone rubber materials with foam/solid alternating multilayered structures were successfully constructed by combining multilayered hot-pressing and supercritical carbon dioxide (SCCO2) foaming. The introduction of the solid layer effectively improved the mechanical properties of the material, providing high supporting counterforce during compression.
In this paper, silicone rubber materials with foam/solid alternating multilayered structures were successfully constructed by combining the two methods of multilayered hot-pressing and supercritical carbon dioxide (SCCO2) foaming. The cellular morphology and mechanical properties of the foam/solid alternating multilayered silicone rubber materials were systematically studied. The results show that the growth of the cell was restrained by the solid layer, resulting in a decrease in the cell size. In addition, the introduction of the solid layer effectively improved the mechanical properties of the microcellular silicone rubber foam. The tensile strength and compressive strength of the foam/solid alternating multilayered silicone rubber materials reached 5.39 and 1.08 MPa, which are 46.1% and 237.5% of the pure silicone rubber foam, respectively. Finite element analysis (FEA) was applied and the results indicate that the strength and proportion of the solid layer played important roles in the tensile strength of the foam/solid alternating multilayered silicone rubber materials. Moreover, the small cellular structures in silicone rubber foam can provided a high supporting counterforce during compression, meaning that the microcellular structure of silicone rubber foam improved the compressive property compared to that for the large cellular structure of silicone rubber foam. The silicone rubber materials with foam/solid alternating multilayered structure have been constructed by combining two methods of the multilayered hot-pressing and supercritical carbon dioxide (SCCO2) foaming. The growth of the cell is restrained by the solid layer, resulting in a decrease of the cell size. In addition, the introduction of the solid layer can effectively improve the mechanical properties of the microcellular silicone rubber foam. The experimental results are analyzed by finite element analysis (FEA).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据