4.7 Article

Comparative secretome analysis between salinity-tolerant and control Chlamydomonas reinhardtii strains

期刊

PLANTA
卷 253, 期 3, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00425-021-03583-7

关键词

Chlamydomonas; Environmental stress; Salinity stress; Secretome; Signal peptide; Unconventional protein secretion

资金

  1. Kasetsart University Research and Development Institute (KURDI), Kasetsart University [(v-t(d)49.59)]

向作者/读者索取更多资源

Secretome analysis of a salt-tolerant and control Chlamydomonas reinhardtii revealed 514 differentially expressed proteins. Proteins involved in membrane transport and trafficking, signal transduction, and channel proteins were up-regulated in the salt-tolerant secretome, indicating that the response to saline stress affects both intracellular and extracellular proteins. Additionally, a high proportion of predicted secreted proteins lacked a signal peptide, suggesting potential unconventional protein secretion pathways.
Main conclusion Secretome analysis of a salt-tolerant and control Chlamydomonas reinhardtii revealed 514 differentially expressed proteins. Membrane transport and trafficking, signal transduction and channel proteins were up-regulated in the ST secretome. Salinity is a major abiotic stress that limits crop production worldwide. Multiple adverse effects have been reported in many living organisms exposed to high-saline concentrations. Chlamydomonas reinhardtii is known for secreting proteins in response to many environmental stresses. A salinity-tolerant (ST) strain of Chlamydomonas has been developed, whose cells were able to grow at 300 mM NaCl. The current study analyzed the secretomes of ST grown in TAP medium supplemented with 300 mM NaCl and the laboratory strain CC-503 grown in TAP medium without NaCl supplement. In total, 514 secreted proteins were identified of which 203 were up-regulated and 110 were down-regulated. Bioinformatic analysis predicted 168 proteins to be secreted or in the conventional secretory pathway. Out of these, 70 were up-regulated, while 51 proteins were down-regulated. Proteins involved in membrane transport and trafficking, signal transduction and channel proteins were altered in their expression in the ST secretome, suggesting the response of saline stress acts toward not only the intracellular pool of proteins but also the extracellular proteins. This also suggested that the secreted proteins might have roles in the extracellular space. Signal peptide (SP) prediction revealed that almost 40% of the predicted secreted proteins contained a signal peptide; however, a high proportion of proteins lacked an SP, suggesting that these proteins might be secreted through an unconventional protein secretion pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据