4.7 Article

The C-terminal tail of the plant endosomal-type NHXs plays a key role in its function and stability

期刊

PLANT SCIENCE
卷 303, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2020.110791

关键词

Na+/H+ antiporter; C-terminal tail; Protein stability; NMR

资金

  1. National Key Research and Development Program of China [2019YFD1000604]
  2. Agriculture Research System of China [CARS-18-ZJ0201]

向作者/读者索取更多资源

The study investigated the function of MnNHX6, an endosomal-type NHX in mulberry, and found that the conserved region of its C-terminus plays a crucial role in protein function, stability, and interaction with other proteins. These findings contribute to a better understanding of the role of the C-terminal tail of NHXs in plants and the ion transport mechanism of NHX-like antiporters.
Typically, Na+/H+ antiporters (NHXs) possess a conserved N-terminus for cation binding and exchange and a hydrophilic C-terminus for regulating the antiporter activity. Plant endosomal-type NHXs play important roles in protein trafficking, as well as K+ and vesicle pH homeostasis, however the role of the C-terminal tail remains unclear. Here, the function of MnNHX6, an endosomal-type NHX in mulberry, was investigated using heterologous expression in yeast. Functional and localization analyses of C-terminal truncation and mutations in MnNHX6 revealed that the C-terminal conserved region was responsible for the function and stability of the protein and its hydrophobicity, which is a key domain requirement. Nuclear magnetic resonance spectroscopy provided direct structural evidence and yeast two-hybrid screening indicated that this functional domain was also necessary for interaction with sorting nexin 1. Our findings demonstrate that although the C-terminal tail of MnNHX6 is intrinsically disordered, the C-terminal conserved region may be an important part of the external mouth of this transporter, which controls protein function and stability by serving as an inter-molecular cork with a chain mechanism. These findings improve our understanding of the roles of the C-terminal tail of endosomal-type NHXs in plants and the ion transport mechanism of NHX-like antiporters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据