4.7 Article

Hydrogen sulfide priming can enhance the tolerance of artichoke seedlings to individual and combined saline-alkaline and aniline stresses

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 159, 期 -, 页码 347-362

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2020.12.034

关键词

Abiotic stress; Aniline; Artichoke; Hydrogen sulfide; Oxidative stress; Saline-alkaline; Secondary metabolites

资金

  1. Taif University, Taif, Saudi Arabia [TURSP-2020/72]

向作者/读者索取更多资源

The study found that H2S priming can protect artichoke plants under saline-alkaline and/or aniline stress, mitigate the detrimental effects of stress, and enhance stress tolerance by improving the antioxidant system.
Regulatory roles of hydrogen sulfide (H2S) under saline-alkaline and/or aniline stress have not been studied yet. In this study, we investigated the insights into saline-alkaline and/or aniline stresses-induced toxicity in artichoke plants and its alleviation by H2S priming. Individual saline-alkaline or aniline stress and their combination reduced plant growth and photosynthetic pigments. Principal component analysis (PCA) revealed that these detrimental impacts were caused by the higher oxidative damage and disruption of osmolyte homeostasis. Interestingly, only aniline stress (25 mg L-1) caused neither oxidative nor osmotic stress thus almost slight growth retarding effects had ensued. On the other hand, the presence of aniline in saline-alkaline conditions exacerbated stress-induced deleterious effects on plants, as evidenced by PCA and heatmap. However, H2S priming markedly eased the stress-induced deleteriousness as evident by enhanced chlorophyll, soluble proteins, soluble carbohydrates and up-regulated water relation in H2S-primmed plants compared with only stressed plants resulting in improved plant phenotypic features. Furthermore, H2S priming enhanced endogenous H2S content, phenylalanine ammonia-lyase, non-enzymatic antioxidants (ascorbic acid, flavonoids, glutathione, alpha-tocopherol, and anthocyanins) and enzymatic antioxidants (superoxide dismutase, catalase, and ascorbate peroxidase), whereas reduced oxidative stress markers (superoxide, hydrogen peroxide, hydroxyl radical, malondialdehyde, and methylglyoxal) compared with only stressed plants, indicating a protective function of H2S against oxidative damage. The PCA also clarified that H2S-mediated saline-alkaline and/or aniline stress tolerance strongly connected with the improved antioxidant system. Overall, our finding proposed that H2S priming could be an effective technique to mitigate saline-alkaline and/or aniline stress in artichoke, and perhaps in other crop plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据