4.7 Article

Oscillatory flow around a vertical wall-mounted cylinder: Flow pattern details

期刊

PHYSICS OF FLUIDS
卷 33, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0032643

关键词

-

向作者/读者索取更多资源

The study investigated the flow fields around a vertical wall-mounted cylinder under wave conditions, confirming the consistency between numerical simulations and analytical solutions. By presenting flow details and coherent structure dynamics, the study revealed the mechanistic view of bed shear and scour processes near the cylinder-wall junction.
The interaction between surface gravity waves and a vertical wall-mounted rigid cylindrical structure such as a pier or vegetation involves various interdependent physical phenomena including the scouring process and the vertical mixing and horizontal dispersion of materials. As a step toward understanding this interaction, detailed flow fields of sinusoidal oscillatory flow passing a vertical wall-mounted cylinder are numerically investigated for three different wave conditions. With a moderately wide range of the Keulegan-Carpenter number from 6 to 20, numerical simulations are systematically performed, and the data are extensively investigated to determine the dynamic characteristics of the oscillatory flow past a wall-mounted cylinder. In this study, three-dimensional unsteady incompressible Navier-Stokes equations are solved using the open-source software, OpenFOAM((R)). Grid-convergence tests are conducted, and the undisturbed oscillating Stokes boundary-layer determined by numerical simulations is validated by a good agreement with the analytical solution. Flow details in the form of profiles, streamlines, and contours of calculated turbulence fields are presented. Coherent structure dynamics is illustrated using iso-surfaces of the Q-criterion. The synthesis of various flow variables presents a mechanistic view of the bed shear and processes responsible for scour near the cylinder-wall junction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据