4.8 Article

Giant Magnetoresistance in Boundary-Driven Spin Chains

期刊

PHYSICAL REVIEW LETTERS
卷 126, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.126.077203

关键词

-

资金

  1. Independent Research Fund Denmark DFF-FNU

向作者/读者索取更多资源

Giant magnetoresistance has been observed in a spin chain composed of weakly interacting layers of strongly coupled spins, even in systems as small as four spins. The effect is driven by a mismatch in the energy spectrum leading to spin excitations being reflected at layer boundaries, which can be controlled by external magnetic fields to achieve giant magnetoresistance. A simple rule based on the energy levels of the strongly coupled spins can predict the behavior of spin transport under the influence of a magnetic field.
In solid state physics, giant magnetoresistance is the large change in electrical resistance due to an external magnetic field. Here we show that giant magnetoresistance is possible in a spin chain composed of weakly interacting layers of strongly coupled spins. This is found for all system sizes even down to a minimal system of four spins. The mechanism driving the effect is a mismatch in the energy spectrum resulting in spin excitations being reflected at the boundaries between layers. This mismatch, and thus the current, can be controlled by external magnetic fields resulting in giant magnetoresistance. A simple rule for determining the behavior of the spin transport under the influence of a magnetic field is presented based on the energy levels of the strongly coupled spins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据