4.3 Article

Investigation on the Stability, Elastic Properties, and Electronic Structure of Mg2Si Doped with Different Concentrations of Cu: A First-Principles Calculation

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssb.202000597

关键词

computational physics; Cu doping; density functional theory; elastic properties; electronic structure; Mg2Si

资金

  1. Research Capacity Cultivation Fund of Shenyang University of Technology [200005742]
  2. Science and Technology Development Program of Shouguang 2019 [2019JH14]

向作者/读者索取更多资源

The effects of Cu doping with different concentrations on the stability, elastic properties, and electronic structure of Mg2Si were investigated. Cu atoms tend to occupy Mg sites in Mg2Si lattices and form Si-Cu covalent bonds to enhance structure stability. Cu doping improves the elastic and plastic properties of the Mg2Si alloy system and changes Mg7Si4Cu and Mg8Si3Cu from semiconducting to metallic state.
Herein, the effects of Cu doping with different concentrations on the stability, elastic properties, and electronic structure of Mg2Si are investigated by first-principles calculations based on density functional theory. The research results show that Mg2Si and Mg8-xSi4-yCux+y (x, y) = {(0.125, 0), (0, 0.125), (0.25, 0), (0, 0.25), (0.5, 0), (0, 0.5), (1, 0), (0, 1)} are stable in the system. The Cu atoms tend to preoccupy Mg sites in Mg2Si lattices, and the alloying ability is stronger than that of Mg8Si4-yCuy (y = 0.125, 0.25, 0.5, 1). Although all dopants are brittle phases, the doping behavior of Cu atoms improves the elastic and plastic properties of the Mg2Si alloy system. The bonding modes of the crystal are also changed. The Si-Cu covalent bond formed by Mg8-xSi4Cux (x = 0.125, 0.25, 0.5, 1) further increases the structure stability. Meanwhile, Mg7Si4Cu and Mg8Si3Cu are changed from semiconducting to metallic state by energy band structure analysis. It not only increases the carrier concentration, but also reduces the free electron transition energy, which improves the conductivity of the intrinsic Mg2Si. These investigations will provide some theoretical basis for the application of Mg2Si intermetallic compounds in structural materials and thermoelectric materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据