4.7 Article

Multiple microRNAs regulate tacrolimus metabolism through CYP3A5

期刊

PHARMACOLOGICAL RESEARCH
卷 164, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phrs.2020.105382

关键词

Tacrolimus; MicroRNAs; Drug metabolizing enzymes; Pediatric liver transplantation

资金

  1. National Natural Science Foundation of China [81670602, 81871287]

向作者/读者索取更多资源

The study shows that CYP3A5 gene polymorphism is the major factor influencing tacrolimus pharmacokinetics. Four miRNAs, including miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26b-5p, are identified as novel regulators of tacrolimus metabolism by affecting CYP3A5 expression through various mechanisms.
The CYP3A5 gene polymorphism accounts for the majority of inter-individual variability in tacmlimus pharmacokinetics. We found that the basal expression of CYP3A5 in donor grafts also played a significant role in tacrolimus metabolism under the same genetic conditions after pediatric liver transplantation. Thus, we hypothesized that some potential epigenetic factors could affect CYP3A5 expression and contributed to the variability. We used a high-throughput functional screening for miRNAs to identify miRNAs that had the most abundant expression in normal human liver and could regulate tacmlimus metabolism in HepaRG cells and HepLPCs. Four of these miRNAs (miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26-5p) were selected for testing. We found that these miRNAs inhibited tacmlimus metabolism that was dependent on CYP3A5. Putative miRNAs targeting key drug-metabolizing enzymes and transporters (DMETs) were selected using an in silico prediction algorithm. Luciferase reporter assays and functional studies showed that miR-26b-5p inhibited tacrolimus metabolism by directly regulating CYP3A5, while miR-29a-5p, miR-99a-5p, and miR-532-5p targeted HNF4a, NR1I3, and NR1I2, respectively, in turn regulating the downstream expression of CYP3A5; the corresponding target gene siRNAs markedly abolished the effects caused by miRNA inhibitors. Also, the expression of miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26b-5p in donor grafts were negatively correlated with tacmlimus C/D following pediatric liver transplantation. Taken together, our findings identify these miRNAs as novel regulators of tacrolimus metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据