4.7 Article

Prediction of blast-produced ground vibration using particle swarm optimization

期刊

ENGINEERING WITH COMPUTERS
卷 33, 期 2, 页码 173-179

出版社

SPRINGER
DOI: 10.1007/s00366-016-0462-1

关键词

Blasting; PPV; PSO; Multiple linear regression

向作者/读者索取更多资源

Blasting operation is an inseparable operation of the rock fragmentation process in the surface mines and tunneling projects. Ground vibration is one of the most undesirable effects induced by blasting operation which can cause damage to the surrounding residents and structures. So, the ability to make precise predictions of ground vibration is very important to reduce the environmental side effects caused by mine blasting. The aim of this paper is to develop a simple, accurate, and applicable model based on particle swarm optimization (PSO) approach for predicting the ground vibration induced by blasting operations in Shur River dam region, Iran. In this regard, two forms of PSO models, linear and power, were developed. For this work, a database including 80 data sets was collected, and the values of the maximum charge weight used per delay (W), distance between blast-point and monitoring station (D) and peak particle velocity (PPV) were measured. To develop the PSO models, PPV was used as output parameter, while W and D were used as input parameters. To check the performance of the proposed PSO models, multiple linear regression (MLR) model and United States Bureau of Mines (USBM) equation were also developed. Accuracy of models established was evaluated using statistical criteria, i.e., coefficient of correlation (R-2) and root mean square error (RMSE), variance absolute relative error (VARE) and Nash & Sutcliffe (NS). Finally, it was found that the PSO power form provided more accurate predictions in comparison with PSO linear form, MLR and USBM models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据