4.3 Article

Salvianolic Acid B Protects Intervertebral Discs from Oxidative Stress-Induced Degeneration via Activation of the JAK2/STAT3 Signaling Pathway

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2021/6672978

关键词

-

向作者/读者索取更多资源

The results suggest that salvianolic acid B (SAB) protects intervertebral discs from oxidative stress-induced degeneration by activating the JAK2/STAT3 signaling pathway, which enhances proliferation and attenuates apoptosis. In vitro experiments show that SAB can reverse oxidative stress induced by H2O2, reduce cell apoptosis, and restore cell proliferation.
Objective. To evaluate the influence of salvianolic acid B (SAB), an antioxidant derived from Danshen, on intervertebral disc degeneration (IDD) and its possible molecular mechanisms. Methods. Sixty adult rats were randomly grouped (control, IDD, and SAB IDD groups). IDD was induced using needle puncture. The rats received daily administration of SAB (20 mg/kg) in the SAB IDD group while the other two groups received only distilled water. The extent of IDD was evaluated using MRI after 3 and 6 weeks and histology after 6 weeks. Oxidative stress was assessed using the ELISA method. In in vitro experiments, nucleus pulposus cells (NPCs) were treated with H2O2 (100 mu M) or SAB+H2O2, and levels of oxidative stress were measured. Cell apoptosis was assessed by flow cytometry, expression levels of Bcl-2, Bax, and cleaved caspase-3 proteins. Cell proliferation rate was assessed by EdU analysis. Pathway involvement was determined by Western blotting while the influence of the pathway on NPCs was explored using the pathway inhibitor AG490. Results. The data demonstrate that SAB attenuated injury-induced IDD and oxidative stress, caused by activation of the JAK2/STAT3 signaling pathway in vivo. Oxidative stress induced by H2O2 was reversed by SAB in vitro. SAB reduced the increased cell apoptosis, cleaved caspase-3 expression, and caspase-3 activity induced by H2O2. Reduced cell proliferation and decreased Bcl-2/Bax ratio induced by H2O2 were rescued by SAB. Additionally, the JAK2/STAT3 pathway was activated by SAB, while AG490 counteracted this effect. Conclusion. The results suggest that SAB protects intervertebral discs from oxidative stress-induced degeneration by enhancing proliferation and attenuating apoptosis via activation of the JAK2/STAT3 signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据