4.5 Article

Phase transition of ultrasonically sprayed VOx thin films: The role of substrate temperature

期刊

OPTIK
卷 228, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.ijleo.2020.166231

关键词

Ultrasonic spray pyrolysis technique; VOx thin films; X-ray diffraction; Optical properties; Electrical properties

类别

资金

  1. Canakkale Onsekiz Mart University Scientific Research Coordination Unit [FBA-2016-722]

向作者/读者索取更多资源

In this study, VOx semiconductor films were deposited on glass substrates using ultrasonic spray pyrolysis technique. The effect of substrate temperature on physical properties of thin films was investigated. XRD analysis showed that substrate temperature significantly influenced the structural and phase composition of the films; different characteristics were observed in terms of optical and electrical properties.
In this study, vanadium oxide (VOx) semiconductor films were deposited on glass substrates using ultrasonic spray pyrolysis technique. The effect of the substrate temperature on the physical properties of the deposited thin films was investigated. For this purpose, 0.05 M VCl3 aqueous solutions were prepared and sprayed on glass substrates at different temperature of 225 degrees C, 275 degrees C, 325 degrees C and 375 degrees C. Structural properties of VOx thin films were investigated by taking xray diffraction (XRD) patterns and it was determined that the films deposited at 225 degrees C and 275 degrees C have tetragonal V4O9 phase while the ones deposited at 325 degrees C and 375 degrees C have mixture of alpha-V2O5 and beta-V2O5, alpha-V2O5 being dominant. The optical band gap energies of the films were determined to be in the range of 2.29 eV to 2.42 eV. Electrical investigations revealed that VOx films have n-type conductivity and electrical resistivity decreased from 4.07 Omega cm to 0.67 Omega cm depending on the increase in substrate temperature. Scanning electron microscopy (SEM) images showed that morphology of the films highly is sensitive to substrate temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据